Multi-scale Processing of Noisy Images using Edge Preservation Losses
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Fig. 1. Example of a medical image with many curved edges. (a) The original
image. (b) The proposed FED-CNN approach results. (c) FastEdges [22]
results. Both methods achieve high quality of detection while ours run in
milliseconds and FastEdges runtime is more than seconds.
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Fig. 2. Denoising result at additive noise of 50 standard deviation, of the
proposed multi-scale network trained by our edge preservation loss. (a) The
noisy input image. (b) The results of the proposed scheme. (c) Denoising
results of the state-of-the-art DnCNN [34] approach. Our method achieves
the highest SSIM [31] scores in our experiments at all the noise levels.
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[ Algorithm | 0=15 | 0=25 | o=050
IDCNN-E 31.00/0.9 | 28.86/0.85 | 25.95/0.75
IDCNN 30.80/0.89 | 28.73/0.84 | 25.93/0.75
DnCNN 31.74/0.9 29.89/0.85 | 25.69/0.71
BM3D 31.07/0.88 | 28.26/0.81 | 24.57/0.67
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Fig. 9. Examples of real images. Left: the original gray scale images. Middle:
our results. Right: FastEdges [22] results. Both methods achieve high quality
of detections.



