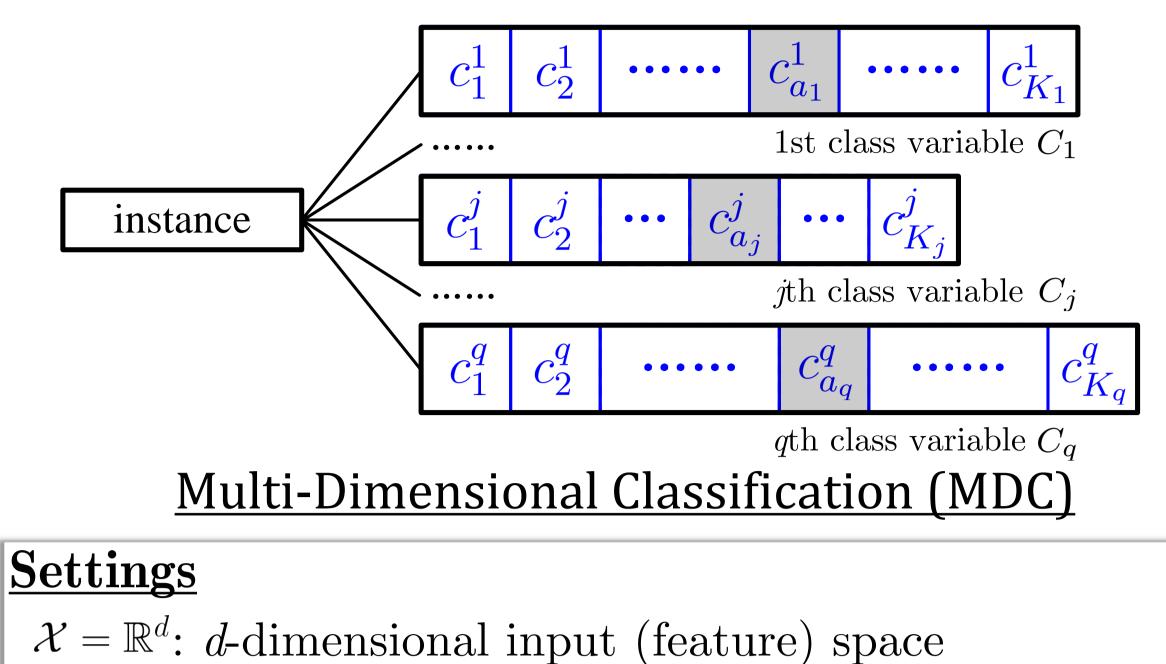
MD-KNN: An Instance-based Approach for Multi-Dimensional Classification

Bin-Bin Jia (jiabb@seu.edu.cn)[†], Min-Ling Zhang(zhangml@seu.edu.cn)[§]

Introduction



The MD-KNN Approach (Con't)

- **Step II:** For each pair of class spaces, MAP inference is made based on their *k*NN counting statistics.
- > Because the posterior probability cannot be explicitly estimated from training set (see our paper for details), the MAP inference is approximately done as follows: for the (r, s)-th class space pair $(1 \le r < s \le q)$: Train g_{rs} over $\mathcal{D}_{rs}^{\text{MAP}}$, i.e., $g_{rs} = \mathcal{M}(\mathcal{D}_{rs}^{\text{MAP}})$
 - $[y_{*r}^{rs}, y_{*s}^{rs}] = \phi_{rs}^{-1}(g_{rs}(\boldsymbol{x}_{*}^{rs})) \text{ where } \boldsymbol{x}_{*}^{rs} = [\boldsymbol{\delta}_{r}^{\boldsymbol{x}_{*}}, \boldsymbol{\delta}_{s}^{\boldsymbol{x}_{*}}]$

 $\mathcal{D}_{rs}^{\text{MAP}} = \{(\boldsymbol{x}_i^{rs}, \phi(y_{ir}, y_{is})) \mid 1 \leq i \leq m\} \text{ and } \boldsymbol{x}_i^{rs} = [\boldsymbol{\delta}_r^{\boldsymbol{x}_i}, \boldsymbol{\delta}_s^{\boldsymbol{x}_i}]$ **Our Paper** $\phi_{rs}(\cdot, \cdot) : C_r \times C_s \to \mathbb{N}$ and inverse function: $\phi_{rs}^{-1}(\cdot, \cdot)$

Step III: Determine the unseen instance x_* 's class label w.r.t. each class space by synergizing the *q*-1 predictions via consulting empirical *k*NN accuracy. > The *q*-1 predictions for x_* 's *j*-th class space $(1 \le j \le q)$: $oldsymbol{y}_{j}^{oldsymbol{x}_{*}} = \left[y_{*j}^{1j}, \ldots, y_{*j}^{(j-1)j}, y_{*j}^{j(j+1)}, \ldots, y_{*j}^{jq}
ight]^{+}$ $h_{1j}(\cdot) = \phi_{1j}^{-1}(g_{1j}(\cdot))$ $h_{jq}(\cdot) = \phi_{jq}^{-1}(g_{jq}(\cdot))$ $h_{j(j+1)}(\cdot) = \phi_{j(j+1)}^{-1}(g_{j(j+1)}(\cdot)) \quad h_{(j-1)j}(\cdot) = \phi_{(j-1)j}^{-1}(g_{(j-1)j}(\cdot))$

 $\mathcal{Y} = C_1 \times C_2 \times \cdots \times C_q$: output space, where $C_j = \{c_1^j, c_2^j, \dots, c_{K_i}^j\}$ Inputs

 $\mathcal{D} = \{(\boldsymbol{x}_i, \boldsymbol{y}_i) \mid 1 \leq i \leq m\}$: training data set, where $\boldsymbol{x}_i = [x_{i1}, x_{i2}, \dots, x_{id}]^\top \in \mathcal{X} \text{ and } \boldsymbol{y}_i = [y_{i1}, y_{i2}, \dots, y_{iq}]^\top \in \mathcal{Y}$ **Outputs**

f: multi-dimensional classifier $\mathcal{X} \to \mathcal{Y}$

MDC example (A piece of music) Dim. 1: Genre --> rock, popular, classical, etc. Dim. 2: Instrument--> piano, violin, guitar, etc. Dim. 3: Language $\rightarrow \rightarrow \checkmark \checkmark \rightarrow = \rightarrow English$, Chinese, Spanish, etc.

Existing Works: Adapting parametric learning tech**niques** to solve the MDC problem (e.g., Bayesian learning, distance metric learning, maximum margin, etc.).

Our Work: Making a first attempt to adapt **instancebased techniques** for MDC.

Here, each element is obtained by different classifier and the one obtained by the *h* with best *k*NN accuracy is returned.

Experiments

Experimental Setup

- > 10 Benchmark Data sets and 3 Evaluation metrics
- **Compared Approaches:** BR, CP, ECC, ESC, gMML
- > Experimental Protocol: Ten-fold cross-validation + Pairwise *t*-test

Experimental Results

The MD-KNN Approach

Step I: Obtain the unseen instance x_* 's kNN counting statistics w.r.t. each class space (i.e., dimension):

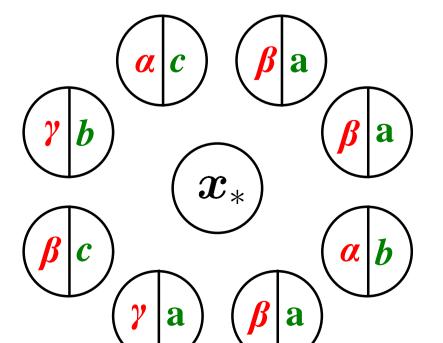
 \succ The kNN counting statistics $\delta_{j}^{\boldsymbol{x}_{*}} = [\delta_{j1}^{\boldsymbol{x}_{*}}, \delta_{j2}^{\boldsymbol{x}_{*}}, \dots, \delta_{jK_{j}}^{\boldsymbol{x}_{*}}]^{\top}$ for the *j*-th class space can be obtained as follows $(1 \le j \le q)$:

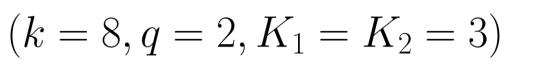
 $\delta_{ja}^{\boldsymbol{x}_*} = \sum_{i_t \in \mathcal{N}_k(\boldsymbol{x}_*)} \mathbb{I}(y_{i_t j}, c_a^j) \quad (1 \le a \le K_j)$

 $\mathcal{N}_k(\boldsymbol{x}_*) = \{i_t \mid 1 \leq t \leq k\}$ stores the set of indices for \boldsymbol{x}_* 's k nearest neighbors identified in training set \mathcal{D} ; $\boldsymbol{y}_{i_t} = [y_{i_t1}, y_{i_t2}, \dots, y_{i_tq}]^{\top}$ corresponds to the class vector of the neighboring MDC example \boldsymbol{x}_{i_t} ;

 $\mathbb{I}(\pi_1, \pi_2)$ returns 1 if π_1 is identical with π_2 and 0 otherwise.

An intuition for computing kNN counting statistics:





In the 8 nearest neighbors of x_* :

1st dimension #Label **α**: 2 #Label β : 4

2nd dimension #Label **a**: 4 #Label **b**: 2

Win/tie/loss counts of pairwise t-test (at 0.05 significance) level) between MD-KNN and each MDC approach.

Evaluation	Md-knn against				
metric	BR	CP	ECC	ESC	gMML
HS	8/1/1	4/1/1	8/1/1	5/1/1	8/1/1
EM	8/2/0	4/1/1	7/3/0	4/2/1	8/2/0
SEM	6/3/1	3/3/0	6/3/1	4/3/0	6/3/1
In Total	22/6/2	11/5/2	21/7/2	13/6/2	22/6/2

DMD-KNN achieves superior or at least comparable performance against the five compared approaches in 119 cases.

- **□**All the 10 under-performing cases and 23 out of 30 comparable cases for MD-KNN against other compared approaches occur for the three data sets with nominal features.
- More details about experimental results and some further analysis (effectiveness of algorithmic design, sensitivity analysis), can be found in our paper.

Conclusion

A first attempt towards adapting instance-based techniques for MDC is investigated, and a novel approach named MD-KNN

