DEEP REINFORCEMENT LEARNING ON A BUDGET: 3D CONTROL AND REASONING WITHOUT A SUPERCOMPUTER
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We present a suite of tasks requiring complex reasoning and exploration in con-
tinuous, partially observable 3D environments. The objective is to provide chal-
lenging scenarios and a robust baseline agent architecture that can be trained
on mid-range consumer hardware in under 24h. Our scenarios combine two key
advantages: (i) they are based on a simple but highly efficient 3D environment
(ViZDoom) which allows high speed simulation (12000fps); (i) the scenarios pro-
vide the user with a range of difficulty settings, in order to identify the limitations
of current state of the art algorithms and network architectures.

Scenarios and required reasoning
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The ordered K —item scenario, where K=4. Left: The agent’s view of the
scenario. Right: a top-down view (unseen by the agent) of an episode where the
agent collects the 4 items in the correct order.
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We have designed scenarios that aim to:
Be proxies for mobile robotics — the tasks represent simplified versions of real
world tasks in mobile and service robotics, where an agent needs to act in an ini-
tially unknown environment, discovering key areas and objects. This also requires
the tasks to be partially observable and to provide 3D egocentric observations.
Test spatial reasoning — the scenarios require the agent to explore the environ-
ment in an efficient manner and to learn spatial-temporal regularities and affor-
dances. The agent needs to autonomously navigate, discover objects, eventually
store their positions for later use if they are relevant, their possible interactions,
the eventual relationships between the objects and the task at hand. Semantic
mapping is a key feature in these scenarios.
Discover semantics from interactions — while solutions exist for semantic
mapping and semantic SLAM [1], we are interested in tasks where the semantics
of objects and their affordances are not supervised, but defined through the task
and thus learned from reward.
Generalize to unseen environments — related to being proxies for robotics,
the trained policies should not encode knowledge about a specific environment
configuration. The spatial reasoning capabilities described above should thus be
learned such that an agent can make a difference between affordances, which
generalize over configurations, and between spatial properties which need to be
discovered in each instance/episode. We thus generate a large number of differ-
ent scenarios in a variety of configurations and difficult settings and split them into
different subsets, evaluating the performance on test data.
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Agent Architecture

We apply a popular model-free policy gradient algorithm, Advantage Actor Critic (A2C) [3],
implemented in the PyTorch [2] framework. A2C optimizes the expected discounted future
return R; = Z?ZO vtrt over trajectories of states sy, action a+ and reward r; triplets collected
during rollouts of a policy in the environment. The algorithm achieves this by optimizing
a policy 7(.|s¢; @) and a value function V7 (s¢; 0). Both the policy and value function are
represented by neural networks with shared parameters ¢ that are optimized by gradient
descent.

The benchmark agent’s network architecture is a 3 layer CNN similar to that used in [4] with
128 GRU to capture long term information, shown in Fig. 2.
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The benchmark agent’s architecture
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For each scenario there are a variety of possible difficulty settings. We have explored a
range of simple to challenging configuration options and evaluated the agent’s performance
when trained for 200 M observations from the environment.

For each possible sub-configuration, 3 independent experiments were conducted with dif-
ferent seeds for the weight initialization in order to get an estimate of the stability of the
training process. Results of the agent’'s mean performance on training and test datasets are
shown with errors of one standard deviation across the 3 seeds. For each plot, we show
a measure of the agent’s performance such as average return or percentage of successful
episodes on the y-axis and the number of environment frames on the x-axis. Figure 3 evalu-
ates the generalization performance of the agent to unseen environment configurations, we
vary the size of the training dataset and in order to quantify generalization performance.
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Generalization to unseen maze configurations: the average return and std. of three
separate experiments trained on the labyrinth scenario with training set sizes of 16, 64, 256
and 1024 mazes, evaluated on the training set (left) and a held out set of 64 mazes (right).
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Figure 4 shows results from the K-item task, experiments were conducted on 4
different scenarios of a fixed size of 5x5 with 2,4,6 and 8 items. Here, the more
critical parameter is the number K of items to be retrieved in correct order. For
the 2 and 4-item scenario configurations, we observe that the policies plateau
near to the optimal policy, the benchmark agent struggles with the 6-item sce-
nario and fails on the 8-item scenario.
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Results from the "Ordered k-item” scenario for k € |2, 4, 6, 8], three experiments
were undertaken for each k.
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Conclusions

This work presents four scenarios that require exploration and reasoning in 3D
environments. The scenarios can be simulated at a rate that exceeds 12,000
FPS (frame skip=4) on average, including environment resets. Training can be
done up to 9,200 FPS (frame skip=4), including forward and backward passes.
Experiments have been conducted for each scenario for a wide variety of diffi-
culty settings. We have shown robust agent performance across random weight
initialization for a fixed set of hyper-parameters. Generalization performance
has been analyzed on held out test data, which demonstrates the ability of the
benchmarks to generalize to unseen environment configurations that are drawn
from the same general distribution. We have highlighted limitations of a typical
RL baseline agent and have identified suitable scenarios for future research.
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