

1. Image Annotation

- Image classification is a challenging task requiring additional information to correctly annotate images.
- We blend visual features extracted from neighbors and their metadata.
- Several convolutional and recurrent neural networks (CNNs-RNNs) are jointly adopted to infer similarity among neighbors and query images.

2. Our approach

For a query image $x_{\!\scriptscriptstyle r}$ we (nonparametrically) generate a neighborhood \mathcal{Z}_x using metadata and train our neural networks to classify x given \mathcal{Z}_x . The set of candidate neighborhoods for an image x is the set:

$$\mathcal{Z}_x = \{s \in \mathcal{P}(X): |s| = m\}$$

The prediction s(x, heta) is the average of $f(x,ec{z}; heta)$ over all candidate neighbourhoods:

$$s(x, heta) = rac{1}{|Z_x|}\sum_{z\in\mathcal{Z}_x}f(x,ec{z}; heta)$$

Our models are trained minimizing the following loss function ${\cal L}$:

$$heta^* = arg \min_{ heta} \sum_{(x,y) \in D_{train}} \mathcal{L}(s(x, heta),y)$$

3. Metadata Encoding

To correctly recover similar images, our models use metadata which are directly fed to the final layers of NNs after a transformation step.

• One-hot encoding: sum of one-hot vectors for all relevant tags of the query image. Neighborhoods are computed using the Jaccard distance ${\cal J}$ between binary vectors.

$$p_x = \sum_{i \ s.t. \ t_i \in \{t_{(1)}, t_{(2)}, ..., t_{(n)}\}} e_i^{ au}$$

 Semantic-aware encoding: a transformation step is employed to map binary vectors to a meaningful semantic space. Word2vec and WordNet embeddings are considered.

$$ho(o_x;eta) = \sum_{i=1}^ au o_{x_{(i)}} \, \cdot eta(t_{(i)})$$

A CNN-RNN Framework for Image Annotation from Visual Cues and Social Network Metadata

Tobia Tesan¹, Pasquale Coscia², Lamberto Ballan² ¹Quantexa Ltd, London, UK ²Department of Mathematics, University of Padova, Italy

4. Visual Models

Query images are classified combining only visual features extracted by the AlexNet CNN pre-trained on ImageNet.

5. Joint Models

Joint models take advantage of additional information (tags) that is fed to the classification layer after a transformation step.

LTwin+2RNN

LTN+AllVecs

LTwin+RNN

Our experiments are performed on the NUS-WIDE dataset considering ~190,000 images and 5000 tags. Per-image/per-label mean Average Precisions (mAPs) metrics show that LTwin model achieves SOTA results compared to several baselines and all the models outperform the visual-only baseline.

Method	mAP _{lab}	mAP_{img}	reclab	prec _{lab}	rec _{img}	prec _{img}
Tag-only Model + linear SVM [7]	46.67	-	-	-		
Graphical Model (all metadata) [7]	49.00				10 70	
CNN + WARP [16]	-	9 00 0	35.60	31.65	60.49	48.59
CNN-RNN [21]	-	-	30.40	40.50	61.70	49.90
SR-RNN [22]	-		50.17 ×	55.65 *	71.35 *	70.57 *
SR-RNN + Vecs [22] †	-	9 — 3	58.52 *	63.51 *	77.33 *	76.21 *
SRN [35]	60.00	80.60	41.50 *	70.40 *	58.70 *	81.10 *
MangoNet [33]	62.80	80.80	41.00 *	73.90 *	59.90 *	80.60 *
LTN [2]	52.78 ± 0.34	80.34 ± 0.07	43.61 ± 0.47	46.98 ± 1.01	74.72 ± 0.16	53.69 ± 0.13
LTN + Vecs [2] †	61.88 ± 0.36	$80.27 \hspace{0.1in} \pm 0.08$	57.30 ± 0.44	$54.74 \hspace{0.1in} \pm 0.63$	$75.10{\scriptstyle~\pm 0.20}$	53.46 ± 0.09
Upper bound	100.00 ± 0.00	100.00 ± 0.00	65.82 ± 0.35	60.68 ± 1.32	92.09 ± 0.10	$66.83 \hspace{0.1cm} \pm 0.12$
Our baseline: v-only	45.05 ± 0.11	76.88 ± 0.11	42.31 ± 0.59	43.74 ± 1.07	71.41 ± 0.13	51.36 ± 0.13
Our baseline: LTN _{n:id}	53.17 ± 0.12	79.82 ± 0.16	45.67 ± 1.75	47.64 ± 2.18	74.29 ± 0.13	53.34 ± 0.17
Our baseline: LTN + Vecs _{n:id,f:id} †	54.86 ± 0.20	$81.34 \hspace{0.1cm} \pm 0.15$	46.56 ± 1.39	50.10 ± 1.70	75.67 ± 0.17	54.37 ± 0.14
Our model: RTN _{n:w2v}	55.36 ± 0.34	79.77 ± 0.27	48.73 ± 2.77	51.21 ± 2.61	74.35 ± 0.29	53.28 ± 0.24
Our model: LTwin _{n:w2v,f:w2v} †	63.13 ± 0.31	83.77 ± 0.06	54.40 ± 1.33	$51.86 \ \pm 1.58$	78.06 ± 0.05	$55.78 \hspace{0.1cm} \pm 0.13$

6. Experimental Results

Visual Models

Joint Models

E-mail: tobiatesan@quantexa.com, {pasquale.coscia, lamberto.ballan}@unipd.it