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ABSTRACT

Subspace clustering refers to the problem of clustering high-dimensional data into a union of low-dimensional sub-
spaces. Current subspace clustering approaches are usually based on a two-stage framework. In the first stage, an af-
finity matrix is generated from data. In the second one, spectral clustering is applied on the affinity matrix. However,
the affinity matrix produced by two-stage methods cannot fully reveal the similarity between data points from the
same subspace, resulting in inaccurate clustering. Besides, most approaches fail to solve large-scale clustering prob-
lems due to poor efficiency. In this paper, we first propose a new scalable sparse method called Iterative Maximum
Correlation (IMC) to learn the affinity matrix from data. Then we develop Piecewise Correlation Estimation (PCE) to
densify the intra-subspace similarity produced by IMC. Finally we extend our work into a Sparse-Dense Subspace
Clustering (SDSC) framework with a dense stage to optimize the affinity matrix for two-stage methods. We show that
IMC is efficient for large-scale tasks, and PCE ensures better performance for IMC. We show the universality of our
SDSC framework for current two-stage methods as well. Experiments on benchmark data sets demonstrate the effec-
tiveness of our approaches.

Iterative Maximum Correlation (IMC): A Better Solu-
tion for Sparse Coefficients Matrix Generation
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Algorithm 1 Iterative Maximum Correlation (IMC)
Input: Data set X, IMC iteration number I".
1: Initialize coefficients matrix C' as a N x N zero matrix,
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7: Compute the new affinity matrix W* =1 — D*

Output: A new affinity matrix W* & RV*N,

Sparse-Dense Subspace Clustering (SDSC): A Universal
Framework
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representation methods.
2. Optimize similarity in TV to get W* by a dense method.
3. Apply spectral clustering on W*.
Output: Clustering results.




