HFP: Hardware- Aware Filter Pruning for Deep
Convolutional Neural Networks Acceleration

Ki LRkl

Institute of Computing Technology

8B YRRy

University of Chinese Academy of Sciences

Fang Yu, Chuanqi Han, Pengcheng Wang, Ruoran Huang, X1 Huang, and Li Cui®

{yufang,hanchuanqil8b,wangpengchengl8s,huangruoran,huangxi,lcui}@ict.ac.cn.

Background

e

I'he promising performance of convolutional
neural networks (CNNs) is companied by sig-
nificant computational cost, making them infea-
sible to be directly deployed on the hardwares
with the limited computational resources. Fil-
ter pruning is recognized as an effective method
to compress and accelerate the CNNs.
However, most of pruning methods cannot prune
a network while respecting a actual budget on
the target hardware, such as latency, power or
energy. As a consequence, these methods can
only prune a network while respecting a hard-
ware budget through trial and error, typically
by pruning multiple times for a network with
various compression hyper-parameters. Hence,
these pruning methods are less efficient in prac-
tice. In this work, we propose a hardware-aware
filter pruning method which can directly control
the latency of pruned networks on the hardware
platform.

Problem Defix

For classification task, let P(Y|X;0) be the

class probability distribution of network output
w.r.t. input sample {X,Y }, where X is the in-
put data, Y is the corresponding label, and ©
is the set of all filters in the network. We use
k to denote the index set of selected filters in
©. Filter pruning is to choose a subset of filters
0,, C © and remove corresponding parameters
0, from the network. We note the remaining
filters as 9;, thus we have 6’: Jo, = 0. To
minimize the accuracy drop while meeting the
budget of latency on hardware, we need to care-
fully choose the index set k* by solving the fol-
lowing constrained optimization problem:

k* = arg m}gnﬁoE(Y,P(Y\X, 0))
s.t. LAT(6;.) < Bud,

where Lo g is cross-entropy loss, LAT(-) evalu-
ates the actual latency of pruned network con-
sumed on the hardware, and Bud is the budget
about latency. The constrained objective can be
replaced by FLOPs in theory, memory or energy
consumption on hardware, etc, or a combination
of these metrics.

Lookup table

As the number of potential pruned networks in
the pruning process is numerous, measuring the
latency of each network of intermediate pruning
process 1s extremely time-consuming. There-
fore, we employ a lookup table to estimate the
latency of pruned network. The lookup table
Lat;(cin, cout) provides the latency about filter
configuration layer by layer, where c¢;, /cou: are
the number of input/output channels at the i-
th layer. We individually measure the latency of
all layers with all configurations of input /output
on the hardware of interest, and store them into
the lookup table. By simply summing up the
latency of each layer, we can efliciently esti-
mate the latency LAT(0;") of a pruned network
H,j C ©. Formally, the latency of a pruned net-
work can be denoted as:

LAT(6;") =
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Information gain (IG) can quantify the informa-
tion change of a random variable from a prior
state to a new state that takes some condition
as given. We use information gain to evaluate
the information change of network output distri-
bution after removing filters. As shown in the
figure, if pruning a filter with minimum IG, it
will not change too much about network output
distribution, so this filter can be sately deleted.
Formally, IG of filter is described as:
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However, finding out the group filters with the
minimum IG using above equation is non-trivial
as 1t also requires numerous attempts. We use
second-order Taylor series expansion near 0, =
0 to expand the entropy, and get the IG:

B 1 T
IG[p(y|x,©),0, ] %gTHIj + 59,‘; H@,j,

where ¢g; = gﬁ are elements of the gradient
2 : .

g, H;; = 5 9(1 gw are elements of the Hessian
i Y

matrix H and Ry(0, = 0) is the second-order
remainder term which can be neglected.

Opti-Trim pr

We propose an iterative pruning framework
called Opti-Trim to solve the resource con-
strained pruning problem, which consists of
Opt: phase and Trim phase. The Opti phase is
designed to fine-tune the slashed network and
compute the IG of filters for next pruning. Dur-
ing the Opti phase, apart from cross-entropy
loss, HFP attaches ¢; group regularization
on the filters to fine-tune network weights.
The Trim phase is designed to prune filters,
achieve the budget on hardware and tighten the
resource constraint. This figure illustrates the
all process of Opti-Trim pruning framework.
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Pseudo Code

Algorithm 1: Algorithm Description of HFP

Input: Pre-trained network: ©; Desired budget: Bud;
[teration number: m; Training set: {X,Y }
Output: Pruned network: 6’:*
/+ Initialization * /
1 Build up a lookup table on the target hardware;
2 Obtain the base latency B;
3 Obtain A = (B — Bud)/m;
/* Opti-Trim pruning framework
4 for ¢ € [0,m] do
/* Optli phase
foreach {x,y}c{X Y} do
Fine-tune the remaining filters in the network
via Eq. (9);
Calculate the IG of filter via Eq. (6) or Eq. (7);

end

/+ Trim phase * /

repeat

Prune a filter with the minimum IG across all
layers;

Obtain the current latency LAT(6;") of pruned
network via Eq. (8);

until LAT(0;7) < B —i % A;

13 end

Experimental
Pruning VGG-16 on Cifar-10
Uniform Baselines HFP
Ratio Accuracy Latency  Accuracy  Latency
1% 93.73% 1.68ms - -
0.75X 92.80% 1.45ms 93.93 % 1.25ms
0.5X 91.89% 0.78ms 93.36 % 0.81ms
0.25 X 89.06% 0.42ms 91.04 % 0.45ms

(a) Results of pruning ResNet-32
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(b) Results of pruning ResNet-56
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(c) Results of pruning ResNet-110
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Compared with state-of-the-art methods, the
proposed HFP outperforms these methods on
pruning ResNet series networks.



