
Institute of Computing Technology

HFP:Hardware-AwareFilterPruning forDeep
ConvolutionalNeuralNetworksAcceleration
Fang Yu, Chuanqi Han, Pengcheng Wang, Ruoran Huang, Xi Huang, and Li Cui∗

{yufang,hanchuanqi18b,wangpengcheng18s,huangruoran,huangxi,lcui}@ict.ac.cn.

Background
The promising performance of convolutional
neural networks (CNNs) is companied by sig-
nificant computational cost, making them infea-
sible to be directly deployed on the hardwares
with the limited computational resources. Fil-
ter pruning is recognized as an effective method
to compress and accelerate the CNNs.
However, most of pruning methods cannot prune
a network while respecting a actual budget on
the target hardware, such as latency, power or
energy. As a consequence, these methods can
only prune a network while respecting a hard-
ware budget through trial and error, typically
by pruning multiple times for a network with
various compression hyper-parameters. Hence,
these pruning methods are less efficient in prac-
tice. In this work, we propose a hardware-aware
filter pruning method which can directly control
the latency of pruned networks on the hardware
platform.

Problem Definition
For classification task, let P (Y |X; Θ) be the
class probability distribution of network output
w.r.t. input sample {X,Y }, where X is the in-
put data, Y is the corresponding label, and Θ
is the set of all filters in the network. We use
k to denote the index set of selected filters in
Θ. Filter pruning is to choose a subset of filters
θ−k ⊂ Θ and remove corresponding parameters
θ−k from the network. We note the remaining
filters as θ+k , thus we have θ+k ∪ θ−k = Θ. To
minimize the accuracy drop while meeting the
budget of latency on hardware, we need to care-
fully choose the index set k∗ by solving the fol-
lowing constrained optimization problem:

k∗ = arg min
k
LCE(Y, P (Y |X, θ+k))

s.t. LAT(θ+k∗) < Bud,

where LCE is cross-entropy loss, LAT(·) evalu-
ates the actual latency of pruned network con-
sumed on the hardware, and Bud is the budget
about latency. The constrained objective can be
replaced by FLOPs in theory, memory or energy
consumption on hardware, etc, or a combination
of these metrics.

Lookup table
As the number of potential pruned networks in
the pruning process is numerous, measuring the
latency of each network of intermediate pruning
process is extremely time-consuming. There-
fore, we employ a lookup table to estimate the
latency of pruned network. The lookup table
Lati(cin, cout) provides the latency about filter
configuration layer by layer, where cin/cout are
the number of input/output channels at the i-
th layer. We individually measure the latency of
all layers with all configurations of input/output
on the hardware of interest, and store them into
the lookup table. By simply summing up the
latency of each layer, we can efficiently esti-
mate the latency LAT(θ+k) of a pruned network
θ+k ⊂ Θ. Formally, the latency of a pruned net-
work can be denoted as:

LAT(θ+k) =
∑n

i=1
Lati(cin, cout).

Greedily pruning via IG

Distribution
unchanged

Input image Conv-FC-Softmax

(a)

(b)

ca
t

do
g

ot
he

r

ca
t

do
g

ot
he

r

Unpruned
network output

Pruned
network output

Prune a filter
with minimum IG

Prune a filter
with maximum IG

Distribution
changed

P
 (Y

 |X
)

P
 (Y

 |X
)

Information gain (IG) can quantify the informa-
tion change of a random variable from a prior
state to a new state that takes some condition
as given. We use information gain to evaluate
the information change of network output distri-
bution after removing filters. As shown in the
figure, if pruning a filter with minimum IG, it
will not change too much about network output
distribution, so this filter can be safely deleted.
Formally, IG of filter is described as:

IG[P (Y |X,Θ), θ−k] =H[P (Y |X,Θ)]−
H[P (Y |X,Θ)|θ−k = 0]

=H[P (Y |X,Θ)]−
H[P (Y |X, θ+k)]

However, finding out the group filters with the
minimum IG using above equation is non-trivial
as it also requires numerous attempts. We use
second-order Taylor series expansion near θ−k =
0 to expand the entropy, and get the IG:

IG[p(y|x,Θ), θ−k] ≈gTθ+k +
1

2
θ+k

TH θ+k ,

where gi = ∂H
∂θ+i

are elements of the gradient

g, Hi,j = ∂2H
∂θ+i ∂θ

+
j

are elements of the Hessian

matrix H and R2(θ−k = 0) is the second-order
remainder term which can be neglected.

Opti-Trim pruning framework
We propose an iterative pruning framework
called Opti-Trim to solve the resource con-
strained pruning problem, which consists of
Opti phase and Trim phase. The Opti phase is
designed to fine-tune the slashed network and
compute the IG of filters for next pruning. Dur-
ing the Opti phase, apart from cross-entropy
loss, HFP attaches `1 group regularization
on the filters to fine-tune network weights.
The Trim phase is designed to prune filters,
achieve the budget on hardware and tighten the
resource constraint. This figure illustrates the
all process of Opti-Trim pruning framework.

Pre-trained
 model

Build up a
lookup table

[Opti]:
Fine-tune model
and compute IG

[Trim]:
 Prune filters to
meet the budget

End?
Pruned
model

loop for
m times

tighten
constraint

Acknowledgements
The paper is supported by the National Natu-
ral Science Foundation of China (NSFC) under
Grant No. 61672498 and the National Key Re-
search and Development Program of China un-
der Grant No. 2016YFC0302300.

Pseudo Code

Pre-trained
 model

Build up a
lookup table

[Opti]:
Fine-tune model
and compute IG

[Trim]:
 Prune filters to
meet the budget

End?
Pruned
model

loop for
m times

tighten
constraint

Fig. 2. Illustration of HFP. Firstly, HFP takes a pre-trained network as input
and builds up a lookup table. Then, the Opti-Trim framework composed of
Opti phase and Trim phase starts to prune the model. The Opti phase is to fine-
tune the pruned model and compute the IG of filters during back-propagation.
The Trim phase is to globally prune filters with the minimum IG one by one
until meeting resource constraint. The Opti and Trim phase alternately work
m times.

D. Opti-Trim pruning framework

We propose an iterative pruning framework called Opti-
Trim to solve the resource constrained pruning problem, which
consists of Opti phase and Trim phase. The workflow of Opti-
Trim in the HFP is illustrated in Figure 2.

To start with, we input a pre-trained network into the Opti-
Trim pruning framework. Then, we build up a lookup table
about latency on the target hardware. Afterwards, Opti phase
and Trim phase will cycle m times. The Opti phase is designed
to fine-tune the slashed network and compute the IG of filters
for next pruning. During the Opti phase, apart from cross-
entropy loss, HFP attaches `1 group regularization [32] on the
filters to fine-tune network weights:

Lopti = LCE + λ
∑
i∈k

|θ+i |1, (9)

where λ is a trade-off coefficient. Equation (9) imposes a
sparse constraint on filters, which helps to reveal the unim-
portant filters and boost the pruning procedure. During the
backpropagation process, HFP computes the IG of each filter
over input samples to estimate the filter importance.

The Trim phase is designed to prune filters, achieve the
budget on hardware and tighten the resource constraint. In
the Trim phase, according to the ranking of filters’ IG across
all layers, HFP prunes filters with the minimum IG to satisfy
the budget constraint, where the latency is obtained by the
lookup table. In this way, the pruned networks can adapt to
the nature of hardware. To decrease pruning error, we follow
the similar idea of progressive barrier method [33], and solve
the constrained problem (4) in a progressive manner. Formally,
the budget constraint in Eq (4) can be reformulated as:

LAT(θ+k) < B− i ∗∆, i = 1, 2, ...,m, (10)

where m is the progressive iteration number, B is the base
latency of original network and ∆ = (B−Bud)/m is the pace
of constraint in each pruning iteration. In each iteration, the re-
source constraints are tighten and thus more unimportant filters
are pruned. The Opti phase and Trim phase alternately work
until the target number of iteration is achieved. Finally, the
pruned model satisfies the latency budget and can be directly
deployed on the target hardware. Algorithm 1 summarizes the
overall procedure of our method.

Algorithm 1: Algorithm Description of HFP
Input: Pre-trained network: Θ; Desired budget: Bud;

Iteration number: m; Training set: {X,Y }
Output: Pruned network: θ+k∗
/* Initialization */

1 Build up a lookup table on the target hardware;
2 Obtain the base latency B;
3 Obtain ∆ = (B− Bud)/m;
/* Opti-Trim pruning framework */

4 for i ∈ [0,m] do
/* Opti phase */

5 foreach {x,y}∈{X,Y} do
6 Fine-tune the remaining filters in the network

via Eq. (9);
7 Calculate the IG of filter via Eq. (6) or Eq. (7);
8 end

/* Trim phase */
9 repeat

10 Prune a filter with the minimum IG across all
layers;

11 Obtain the current latency LAT(θ+k) of pruned
network via Eq. (8);

12 until LAT(θ+k) < B− i ∗∆;
13 end

IV. EXPERIMENTS

A. Experimental settings

1) Hardware and Software: The proposed HFP is imple-
mented by Pytorch, and it is conducted on a server with
4 Nvidia Geforce GTX 2080Ti GPUs and an Intel Xeon
Silver 4114 CPU. In addition, we use Nvidia Jetson TX2
as the embedded device to test the actual performance of
pruned networks. The Jetson TX2 contains an integrated 256-
core Pascal GPU, which provides considerable computational
power with limited power consumption. All experiments are
performed under CUDA 10.0 and CUDNN 7.6.1.

2) Benchmark datasets: We mainly evaluate the proposed
HFP on CIFAR-10 [34] and ImageNet [35]. CIFAR-10 con-
tains 50k training images and 10k validation images belonging
to 10 generic categories of objects, whose resolution is 32×32.
ImageNet is a large scale dataset containing 1.28 million
training images and 50k validation images of 1k classes.

B. Results on CIFAR-10

We first employ HFP to prune the single-branch network,
i.e., VGG-16 [13] on CIFAR-10, and record the latency on
the server CPU. We use uniform pruning as baselines, which
uniformly prune all convolutional layers with a fixed pruning
ratio. The baselines are trained from scratch for 200 epochs
with the standard data augmentation and SGD optimizer. The
initial learning rate is 0.01 and decayed by 0.1 every 60
epochs. For the settings of HFP, we use IG(2) as pruning
criterion, and set the progressive iteration number m as 60.
We use the SGD optimizer with a learning rate of 10−3 to

Experimental Results
Pruning VGG-16 on Cifar-10

TABLE I
RESULTS OF PRUNING VGG-16 ON CIFAR-10

Uniform Baselines HFP
Ratio Accuracy Latency Accuracy Latency

1× 93.73% 1.68ms - -
0.75× 92.80% 1.45ms 93.93% 1.25ms
0.5× 91.89% 0.78ms 93.36% 0.81ms
0.25× 89.06% 0.42ms 91.04% 0.45ms

fine-tune the pruned networks in the Opti phase. The batch
size is set as 128. The λ in Eq. (9) is set as 10−4. The pre-
trained VGG-16 achieves classification accuracy of 93.73%
with base latency of 1.68ms on the Intel Xeon Silver 4114
CPU. We set the desired budget as 0.75×, 0.5× and 0.25×
reduction of base latency.

As can be observed in Table I, the VGG-16 networks
pruned by HFP achieve significantly higher accuracy than the
uniform baselines with the similar latency. For example, HFP
obtains 1.13% higher accuracy than 0.75× uniform pruning
baseline (93.93% vs. 92.80%), while achieving 0.2ms lower
latency (1.25ms vs. 1.45ms). We also visualize the pruned
architectures of VGG-16 by HFP, and report the corresponding
FLOPs as shown in Fig. 3. We observe that the deeper layers
are pruned with more ratio of filters than the shallower layers
when using HFP to prune the VGGNets. For example, HFP
0.5× and 0.25× are pruned with considerable filters from layer
8 to layer 13. We infer that the features extracted by the deeper
layers are more redundant and inclined to be pruned from
the networks. In addition, it is noteworthy that the practical
acceleration ratio is not proportional to FLOPs reduction ratio.
For instance, HFP 0.75× achieves an acceleration ratio of
25.6%, but reduces FLOPs of 22.5%. As stated earlier, it
may come from model parallelization bottleneck or hardware
configurations such as IO delay, buffer switch and memory
read latency.

We then employ HFP to prune the multiple-branch net-
works, i.e. ResNet [36] on CIFAR-10. In addition, apart from
uniform pruning baselines, we also compare our results with
prevalent acceleration methods, e.g., MIL [37], PFEC [14],
SFP [16], FPGM [6]. Our pruning settings are the same as
pruning VGG-16. For shortcut in ResNet, we only prune
the internal layers, so it avoids residual mechanism error.
Figure 4 shows the accuracy of pruned networks varying
different FLOPs reduction rate. It can be observed that our
HFP outperforms these state-of-the-art methods on pruning
ResNet series networks. For example, for pruning ResNet-56,
HFP obtains 0.31% higher accuracy (93.37% vs. 93.06%) and
22.4% higher FLOPs reduction rate (50.0% vs. 27.6%) than
PFEC method. For pruning ResNet-110, the proposed HFP
also achieves 0.38% higher accuracy (94.21% vs. 93.83%)
and 15.4% higher FLOPs reduction rate (30.0% vs. 14.6%)
than SFP method. Similarly, HFP produces higher accuracy
than uniform pruning methods while keeping higher FLOPs
reduction rate.

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8 9 10 11 12 13

VGG-16 1x (314.16M FLOPs) HFP 0.75x (243.4M FLOPs)

HFP 0.5x (81.08M FLOPs) HFP 0.25x (30.64M FLOPs)

Layer number

Fi
lte

r n
um

be
r

Fig. 3. Number of filters at each layer of pruned VGG-16 on CIFAR-10.

C. Results on ImageNet

We apply the proposed HFP to advanced MobileNets [38]
[39] which adopt depthwise separable convolutions and are
designed for resource-constrained hardware. We conduct the
pruning on the server and test the latency on the Jetson TX2.

1) Pruning MobileNetV1 on Jetson TX2 GPU: Mo-
bileNetV1 [38] adopts depthwise separable convolutions,
which consists of depthwise layer and pointwise layer. Due to
memory constraint, we use IG(1) as pruning criterion of HFP
to evalute the importance of filters at depthwise layers and
pointwise layers. We adopt the uniform pruning as baselines
again, and compare our results with slimmable network [40]
which can adjust its width of layer according to the resource
constraints. The baselines are trained by SGD with 128 batch
size. The total epoch is set as 60. The learning rate is initialized
as 0.01 and decayed by 0.1 per 20 epochs. To prevent excessive
training from wasting resources, we adopt early stopping strat-
egy in the training process. For the pruning settings of HFP,
we set the the progressive iteration number as 40. The batch
size is 128. The λ is 10−4 and learning rate is set as 10−3. We
show the accuracy, FLOPs and latency of pruned networks on
the Jetson TX2, and report the results from slimmable network
in Table II. It can be observed that the networks pruned by
HFP consistently gain significant improvements relative to the
uniform baselines. Compared with slimmable network, HFP
achieves higher accuracy when HFP reserves 50% and 25%
base latency. However, when reserving 75% base latency, our
result is inferior to slimmable network.

2) Pruning MobileNetV2 on Jetson TX2 GPU: Different
from MobileNetV1, MobileNetV2 [39] has shortcut connec-
tion, where each stage starts with a bottleneck block matching
the dimension between two stages. To keep identical among
the dimension of shortcut in each stage, we only prune the in-
ternal layers like pruning ResNet. All the experimental settings
are the same as pruning MobileNetV1. The results are shown
in Table II. It can be seen that HFP outperforms the uniform
pruning baselines again. With the similar latency on Jetson
TX2, the networks pruned by HFP achieve significantly higher
accuracy. Compared with slimmable network, the proposed
HFP also achieves comparable or even better results.

(a) Results of pruning ResNet-32

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %
8 2 %
8 4 %
8 6 %
8 8 %
9 0 %
9 2 %
9 4 %

Ac
cur

acy

F L O P s r e d u c t i o n r a t e

 U n i f o r m
 M I L
 S F P
 F P G M
 H F P

(b) Results of pruning ResNet-56

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %8 4 %
8 6 %
8 8 %
9 0 %
9 2 %
9 4 %

Ac
cur

acy

F L O P s r e d u c t i o n r a t e

 U n i f o r m
 P F E C
 S F P
 F P G M
 H F P

(c) Results of pruning ResNet-110

0 % 2 0 % 4 0 % 6 0 % 8 0 % 1 0 0 %
8 6 %
8 8 %
9 0 %
9 2 %
9 4 %

Ac
cur

acy

F L O P s r e d u c t i o n r a t e

 U n i f o r m
 P F E C
 S F P
 F P G M
 M I L
 H F P

Compared with state-of-the-art methods, the
proposed HFP outperforms these methods on
pruning ResNet series networks.

