

Leveraging a weakly adversarial paradigm for joint learning of disparity and confidence estimation

Matteo Poggi, Fabio Tosi, Filippo Aleotti, Stefano Mattoccia

University of Bologna - Department of Computer Science and Engineering

{m.poggi, fabio.tosi5, filippo.aleotti2, stefano.mattoccia}@unibo.it

ALMA MATER STUDIORUM Università di Bologna

Problem Definition and Contributions

Goal: We aim at jointly learning disparity and confidence estimation from input stereo pairs

Reference image

Disparity map

Confidence map

Key Contributions:

- We train a confidence **discriminator** to detect wrong disparities estimated by a disparity **generator** and forcing the latter to correct them by means of an adversarial loss
- As training progresses, the wrong disparities reduce, making the adversarial term weaker
- Experimental results show improved results on both disparity and confidence estimation

Our generator estimates a disparity map d from a stereo pair (i^L, i^R) as $d = G(i^L, i^R)$. It is trained to minimize the error wrt ground truth \hat{d} by means of loss \mathcal{L}_G

$$\mathcal{L}_{G} = \mathbb{E}_{\substack{i^{L}, i^{R} \sim p_{data}(i^{L}, i^{R}) \\ \hat{d} \sim p_{data}(\hat{d})}} [\mathcal{L}_{1}(G(i^{L}, i^{R}), \hat{d})]$$

According to such an error, pixels are classified as correct, $G_1(i^L, i^R)$, or wrong, $G_0(i^L, i^R)$. The **discriminator** infers a confidence map and is trained on labels $G_1(i^L, i^R)$ and $G_0(i^L, i^R)$ to solve a binary classification problem, with loss \mathcal{L}_D

$$\mathcal{L}_D = \mathbb{E}_{i^L, i^R \sim p_{data}(i^L, i^R)} [\log D(G(i^L, i^R))]$$

An adversarial term $\mathcal{L}_{WAN}(G, D)$ is added to \mathcal{L}_G in order to force G to correct pixels $G_0(i^L, i^R)$

$$\mathcal{L}_{WAN}(G,D) = \mathbb{E}_{i^L,i^R \sim p_{data}(i^L,i^R)} [\log(1 - D(G_0(i^L,i^R)))]$$

Experiments & Results

Training on KITTI 2012, testing on KITTI 2015

Disparity evaluation

	>2	(%)	>3(%)		>4(%)		>5(%)		MAE	
Model	Noc	All								
PSMNet [1]	5.850	6.490	2.736	3.131	1.911	2.186	1.561	1.765	1.163	1.203
Heteroscedastic-PSMNet [2]	5.871	6.562	2.903	3.439	2.047	2.487	1.675	2.052	1.087	1.164
Reflective-PSMNet [3]	5.670	6.209	2.736	3.108	1.936	2.216	1.585	1.804	1.325	1.369
WAN-PSMNet (ours)	5.687	6.246	2.681	3.062	1.885	2.176	1.528	1.762	0.972	1.025

Training on Middlebury *trainingQ*, testing on *additionalQ*

Disparity estimation

Model	>1(%)	>2(%)	>4(%)	MAE
PSMNet [1]	26.121	14.547	8.536	1.920
Heteroscedastic-PSMNet [2]	33.458	18.887	11.722	2.874
Reflective-PSMNet [3]	26.002	14.689	7.159	1.911
WAN-PSMNet (ours)	25.496	14.476	7.132	1.906

1	Confiden	ce	est	tima	tion
	Estimator	AU	Copt	AUC	AUCM

	- · · opt		
CCNN	0.398	1.265	0.867
ConfNet	0.398	2.282	1.884
LGC-Net	0.398	1.059	0.661
Heteroscedastic	0.395	0.955	0.560
Reflective	0.450	1.250	0.800
WAN	0.358	0.908	0.550

(Confiden	ce e	estimation			
		AUCopt	AUC	AUCM		
	CCNN	0.046	0.217	0.176		
	ConfNet	0.046	0.248	0.207		
	LGC-Net	0.046	0.194	0.148		
	Heteroscedastic	0.090	0.363	0.273		
	Reflective	0.045	0.166	0.191		
	WAN	0.041	0.194	0.153		

References

[1] Chang and Chen: Pyramid Stereo Matching Network (CVPR 2018)

[2] Kendal and Gal: What Uncertainties Do We Need in Bayesian Deep Learning for Computer Vision? (NIPS 2017)[3] Shaked and Wolf: Improved stereo matching with constant highway networks and reflective confidence learning (CVPR 2017)

