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Problem Definition and Contributions
Goal: We aim at jointly learning disparity and confidence estimation from input stereo pairslow 
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Key Contributions:
• We train a confidence discriminator to detect wrong disparities estimated by a disparity generator

and forcing the latter to correct them by means of an adversarial loss
• As training progresses, the wrong disparities reduce, making the adversarial term weaker
• Experimental results show improved results on both disparity and confidence estimation

Architecture & Method
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Our generator estimates a disparity map d from a stereo pair (iL, iR) as d = G(iL, iR). It is trained
to minimize the error wrt ground truth d̂ by means of loss LG

LG = EiL,iR∼pdata(i
L,iR)

d̂∼pdata(d̂)

[L1(G(iL, iR), d̂)]

According to such an error, pixels are classified as correct, G1(i
L, iR), or wrong, G0(i

L, iR).
The discriminator infers a confidence map and is trained on labels G1(i

L, iR) and G0(i
L, iR) to

solve a binary classification problem, with loss LD

LD = EiL,iR∼pdata(i
L,iR)[logD(G(iL, iR))]

An adversarial term LWAN(G,D) is added to LG in order to force G to correct pixels G0(i
L, iR)

LWAN (G,D) = EiL,iR∼pdata(i
L,iR)[log(1−D(G0(i

L, iR)))]

Experiments & Results
Training on KITTI 2012, testing on KITTI 2015

Disparity evaluation
>2(%) >3(%) >4(%) >5(%) MAE

Model Noc All Noc All Noc All Noc All Noc All
PSMNet [1] 5.850 6.490 2.736 3.131 1.911 2.186 1.561 1.765 1.163 1.203

Heteroscedastic-PSMNet [2] 5.871 6.562 2.903 3.439 2.047 2.487 1.675 2.052 1.087 1.164
Reflective-PSMNet [3] 5.670 6.209 2.736 3.108 1.936 2.216 1.585 1.804 1.325 1.369

WAN-PSMNet (ours) 5.687 6.246 2.681 3.062 1.885 2.176 1.528 1.762 0.972 1.025

Confidence estimation
Estimator AUCopt AUC AUCM

CCNN 0.398 1.265 0.867
ConfNet 0.398 2.282 1.884

LGC-Net 0.398 1.059 0.661
Heteroscedastic 0.395 0.955 0.560

Reflective 0.450 1.250 0.800
WAN 0.358 0.908 0.550

Training on Middlebury trainingQ, testing on additionalQ

Disparity estimation
Model >1(%) >2(%) >4(%) MAE

PSMNet [1] 26.121 14.547 8.536 1.920
Heteroscedastic-PSMNet [2] 33.458 18.887 11.722 2.874

Reflective-PSMNet [3] 26.002 14.689 7.159 1.911
WAN-PSMNet (ours) 25.496 14.476 7.132 1.906

Confidence estimation
AUCopt AUC AUCM

CCNN 0.046 0.217 0.176
ConfNet 0.046 0.248 0.207

LGC-Net 0.046 0.194 0.148
Heteroscedastic 0.090 0.363 0.273

Reflective 0.045 0.166 0.191
WAN 0.041 0.194 0.153

Qualitative results
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