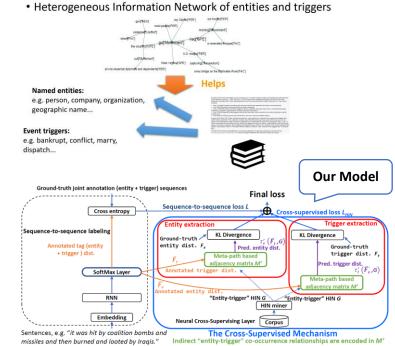

Cross-Supervised Joint-Event-Extraction with Heterogeneous Information Networks


Yue Wang^{1,5}, Zhuo Xu¹, Lu Bai¹, Yao Wan², Lixin Cui¹, Qian Zhao⁵, Edwin R. Hancock³, Philip S. Yu⁴ (wangyue@cufe.edu.cn)

- 1. Central University of Finance and Economics, Beijing, China
- 2. Huazhong University of Science and Technology, Wuhan, China
- 3. Department of Computer Science, University of York, York, UK
- 4. University of Illinois at Chicago, Chicago, USA
- 5. State Key Laboratory of Cognitive Intelligence, iFLYTEK, Hefei, China

Main contributions of this paper.

- First to use the indirect "entity-trigger" cooccurrence relationships (encoded in HIN) to improve the performance of the joint-event-extraction task.
- Proposed Cross-Supervised-Mechanism.
- Verify the indirect "entity-trigger" cooccurrence relationships is helpful.

Comparison with different models without any pre-defined features

TABLE II: Comparison on real-world datasets

Model	ACE 2005 Precision Recall F1			NYT Precision Recall F1			CoNLL Precision Recall F1			WebNLG Precision Recall F1		
Seq2Seq	0.442±0.025	0.493±0.0272	0.466±0.026	0.818±0.012	0.832±0.012	0.825±0.012	0.709±0.015	0.852±0.011	0.774±0.013	0.851±0.009	0.910±0.007	0.880±0.008
CRF	0.434±0.031	0.478±0.033	0.455±0.032	0.813±0.011	0.828±0.011	0.821±0.01	0.718±0.016	0.867±0.013	0.785±0.014	0.864±0.005	0.921±0.005	0.892±0.005
GCN	0.435±0.030	0.487±0.032	0.459±0.031	0.804±0.013	0.819±0.013	0.811±0.013	0.706±0.015	0.871±0.014	0.780±0.013	0.884±0.008	0.931±0.008	0.907±0.008
JEE	0.423±0.023	0.468±0.030	0.443±0.026	0.717±0.009	0.645±0.014	0.679±0.012	0.713±0.019	0.814±0.013	0.76±0.015	0.775±0.015	0.818±0.012	0.796±0.013
IT	0.469±0.003	0.426±0.005	0.447±0.004	0.725±0.012	0.691±0.006	0.708±0.009	0.738±0.025	0.837±0.006	0.784±0.021	0.818±0.011	0.829±0.007	0.823±0.008
CSM _{DA}	0.455±0.024	0.494 ± 0.022	$0.474 {\pm} 0.023$	0.835 ± 0.012	0.847±0.012	0.841±0.012	0.730 ± 0.017	0.856 ± 0.021	0.788 ± 0.019	0.908 ± 0.005	0.941 ± 0.004	0.924 ± 0.004
CSM _{HIN}	0.477±0.030	0.533 ± 0.033	$0.503 {\pm} 0.031$	0.859 ± 0.007	0.870±0.008	0.865±0.008	0.754 ± 0.018	0.890 ± 0.020	0.816 ± 0.017	0.923 ± 0.004	0.953 ± 0.003	0.937 ± 0.003

	Model	Entity extraction				er extracti	on	
	Model	Precision	Recall	F1	Precision	Recall	F1	
	Seq2Seq	0.494	0.489	0.49	0.383	0.426	0.403	Our models
	CRF	0.502	0.483	0.491	0.395	0.473	0.431	
	GCN	0.508	0.491	0.499	0.381	0.443	0.410	
	JEE	0.451	0.497	0.472	0.407	0.411	0.409	
	JT	0.492	0.458	0.474	0.447	0.414	0.432	
1	CSM_{DA}	0.509	0.535	0.52	0.404	0.442	0.422	
l	CSM_{HIN}	0.512	0.552	0.532	0.464	0.484	0.474	

