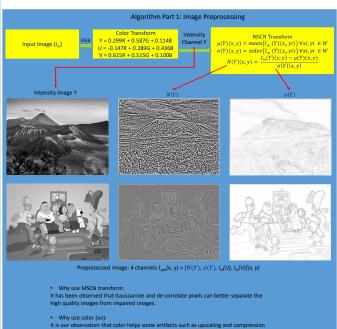
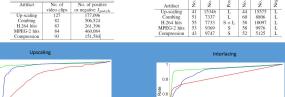

A Scalable Deep Neural Network to Detect Low Quality Images Without a Reference

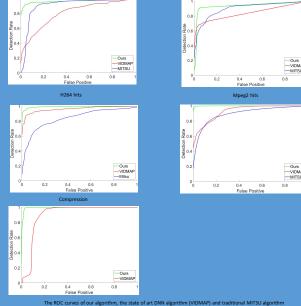

Zongyi (Joe) Liu, Bruce Ferry, Simon Lacasse

- Improve their live streaming and movie on demand services
- Image quality metrics type
- Full Reference (FR): require a master video/image, e.g., PSNR, MSE, VMAF
- Reduced Reference (RR): require some samples from the master
- Non Reference (NR): no master required, e.g., BRISQUE, NIQE, VIDMAP
- Advantages of using non-reference metrics
 Expense to spatially and temporally align a master video and a captured video A movie of 2 hours captured at 30fps: 2 * 3600 * 30 = 216,000 frames

ON PATTERN RECOGNITION

- · No master video: live streaming
- A novel DNN that has better accuracy than state-of-art algorithms and is scalable
- Measure 5 commonly seen NR artifacts: upscaling, interlacing, h264 hits, mpeg2 hits and compression

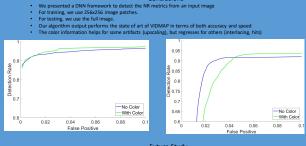

Contact us for more information at (joeliu, bferry)@amazon.com



5-60 seconds

The testing dataset with HD and non-HD images for each artifact detection. Note that there are two types of sources: the $\bf L$ means the data are from our lab and are labelled by a IDEO SPECIALIST, AND THE S MEANS THE DATA ARE THE SYNTHESIZED IMAGES AS DESCRIBED IN II-B.

The training dataset we created for each artifact detection One video clip has a dubration ranging from 5 seconds to 60 seconds, and we bruilt $\mu_{\rm patch}$ with a fixed size of 256×256 as training samples. Here we built an equal number of positive and negative training indices using over-sampling. Artifact


Conclusions

The algorithm performance comparison between our algorithm, VIDMAP algorithm [13] and MITSU algorithm [17], [18], [19] in terms of detection rate at false positive rate (FP) of 5% and 10%, respectively.

Artifact	FP	Ours	VIDMAP	MITSU
Up-scaling	5%	92.0	38	46.4
	10%	94.4	48.7	83
Combing	5%	90.9	68.5	63.1
	10%	91.5	72.0	71.4
H.264 hits	5%	98.3	86.3	75.6
	10%	99.6	88.47	80.9
MPEG-2 hits	5%	99.2	66.2	60.1
	10%	99.8	72.8	73.7
0 1	5%	99.6	9.4	N/A
Compression				

THE RUNNING TIME IN TERMS OF MILLUSECONDS FOR OUR ALGORITHM THE RUNNING TIME IN TERMS OF MILLISECONDS FOR OUR ALGORITHM AND THE STATE OF THE ART VIDMAP ALGORITHM [13] WHEN PROCESSING IMAGES WITH SIZE OF 1920×1080 . THE TEST MACHINE IS AN AWS P3.2X Large instance with one NVIDIA Tesla V100-SXM2 GPU AND AN INTEL(R) XEON(R) CPU @2.30GHz.

Algorithm	(CPU Only)	(GPU Required)
Ours	180	40
VIDMAP	180	1150

- Future Study
- Change the binary classifier into multiple classifier: one pass to predict multiple artifacts
 Change the super-pixel level output to pixel level output: FPN backbone