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Abstract

Multi-step (also called n-step) methods in Reinforcement Learning (RL) have been shown to be more efficient than the 1-step
method due to faster propagation of the reward signal, both theoretically and empirically, in tasks exploiting tabular
representation of the value-function. Recently, research in Deep Reinforcement Learning (DRL) also shows that multi-step
methods improve learning speed and final performance in applications where the value-function and policy are represented
with deep neural networks. However, there is a lack of understanding about what is contributing to the boost of performance. In
this work, we analyze the effect of multi-step methods on alleviating the overestimation problem in DRL, where multi-step
experiences are sampled from a replay buffer. Specifically building on top of Deep Deterministic Policy Gradient (DDPG), we
propose Multi-step DDPG (MDDPG), where different step sizes are manuallyset, and a variant called Mixed Multi-step
DDPG (MMDDPG) where an average over different multi-step backups is used as an update target for the Q-value function.

Motivation

Multi-step (also called n-step) methods in
Reinforcement Learning (RL), with tabular
representation of the value-function, have been
shown to be more efficient than the 1-step method
due to faster propagation of the reward signal.

Research in Deep Reinforcement Learning (DRL),
with value-function and policy approximated by deep
neural networks, shows that multi-step methods
improve learning speed and final performance.

However, there is a lack of understanding about what
is contributing to the boost of performance of multi-
step methods in DRL.

Background

Overestimation Problem

Assume Q'€ is represented by a function
approximator Q*PPTo% with noise E(s’,a'):

C)(u}pr’o.l:(sﬂ.aﬂ) = Qt.y u('(sf! Hf) + E(.S'/.(J.’;
Then, for Q-Learning technique
Qumn‘zw(s. a) = T'(.‘a‘.(l) 4 max Q“N"'M[h".rl')
a
zero-mean noise may easily result in overestimation
problem because

max Q"% (g, a') > max Q(s’, a’)
@ a’

Eg. if
Q'"e(s',a') =0 and ]E[E(S'._a')] —0
then
max QU (s o)
= max [Q (', ') + E(s',a)]
= max(0 + E(s',a')) > 0
a
while

max Q¢(s",a’) = 0
a
Deep Deterministic Policy Gradient (DDPG)

Critic, i.e. Q-value, is optimized by minimizing
5 2
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= Qoa- (s141,a) , Qpa-
is target critic, and fL@#— is target actor representing
the optimal policy.

Actor, i.e. policy, is optimized by maximizing

Jou = Eq (D) [Qoe (81 ton (51)))

where (Qge and JL@u are online critic and actor.

Proposed Methods

Multi-step DDPG (MDDPG)

Bootstrapped target Q is based on multi-step
immediate rewards
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where n indicates n immediate rewards are used.
Then, Q is optimized by minimizing

Lga
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Mixed Multi-step DDPG (MMDDPG)

An average over target Q-values with different step
sizes from 1ton

n
Alnavg) _ 1 A(0)
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The minimum of a set of target Q-values

(—25”,,..,,) = min Qr”
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An average over target Q-values with step size from
2 to n, considering n= 1 is the most prone to
overestimation:
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Experiment Results

Experimental Evidence of Multi-step
Methods’ Effect on Alleviating
Overestimation

From Fig. 1:

+ Almost all MDDPG(n) with n >1 outperform
DDPG

+ Bad performance of DDPG corresponds to an
extremely large Q-value

ANtPyBUllEtENV-V0

Accumulaed Riwarl Average Q-Value

000

MDDPG(3) MODPG(S)

®
5 g
: 2
& 3
- $ 0
3 &
s & 000
34 g
£ g
5 £ w
< -
W e w9 [ T O
A b4 ., A
(= WODRG(2)  —— WOOPG@) DTG avg)

MMDDPG(5 i) —— MMDOPG(5-avg1) —Dnm‘

Fig. 1 Comparison among MDDPG, MMDDGP and DDPG on AntPyBulletEnv-

V0, here for each task accumulated reward and average Q-value are
shown side-by-side correspondingly to demonstrate the relationship
between the overestimation of Q-value and performance.
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Fig. 2 The Difference in Estimated Target Q-values Between 1-
step and Multi-step Methods, where the larger the value, the
bigger the difference.

Four key characteristics can be observed in Fig. 2:

« All positive gaps means multi-step methods provide
smaller estimated target Q-values than that of the
1-step method.

The larger the step, the smaller the
corresponding estimated target Q-value.

The difference becomes smaller with increased
interactions.

The magnitude of the estimated Q-value decreases
as the step size n increases.

Performance Comparison
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Fig. 3. Learning curves for PyBulletGym tasks.
Discussion

3 ways to calculate Q depending on how the experiences
are acquired: (1) offline, (2) online, (3) model-based
expansion.
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Fig. 4 Comparison between Online and Offline Multi-step Expansion,
where the blue and the red line correspond to average of offline and
online multi-step expansion over a mini-batch sampled from
replay buffer, and the green line is the gap between them.
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