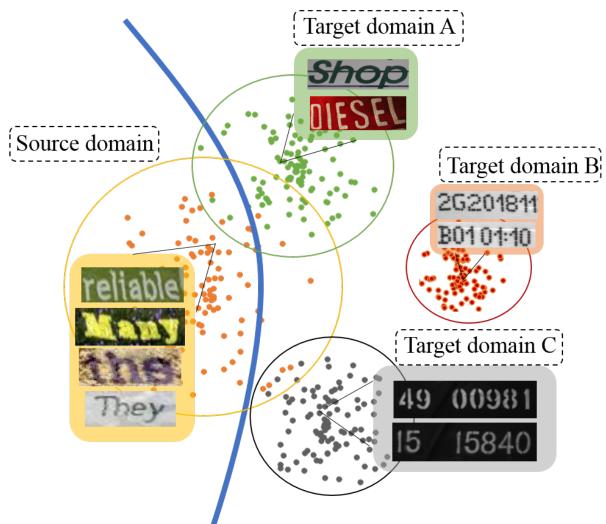


Motivation

- Few-shot domain adaptation techniques have shown their effectiveness in handling scenarios where labeled samples are lacked.
- Most few-shot domain adaptation techniques are focus on character-level task and can hardly handle STR problem because it is a sequence-level image classification task.



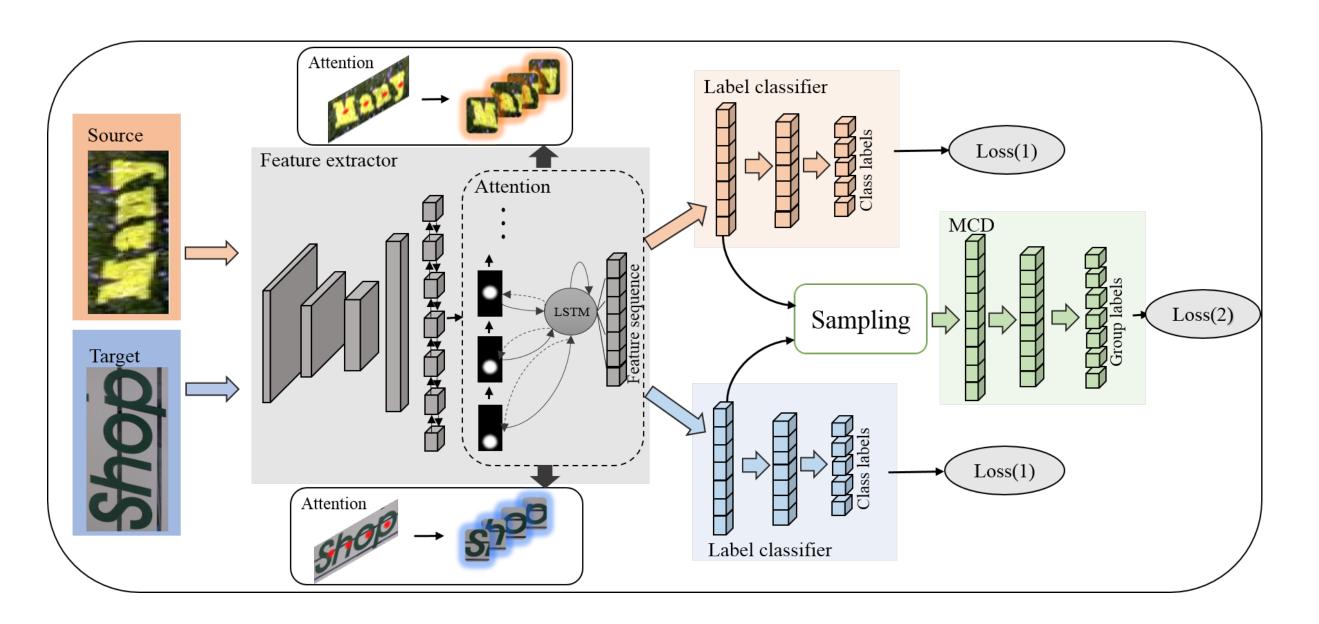
We present a few-shot adversarial sequence domain adaptation approach to achieve sequence-level domain by integrating a well-designed confusion mechanism with sequence-level adversarial strategy into a framework.

Few-shot Adversarial Sequence Domain Adaptation (FASDA)

- The architecture of FASDA consists of two procedures :
- 1) Weakly-supervised Character Feature Representation
- provide "weak" character-level feature representation
- Few-shot Adversarial Learning 2)
- maximize the character-level confusion between the source domain and the target domain

Text Recognition in Real Scenarios with a Few Labeled Samples Jinghuang Lin¹ Zhanzhan Cheng² Yi Niu² Shiliang Pu² Shuigeng Zhou¹

School of Computer Science, Fudan University ² Hikvision Research Institute, China

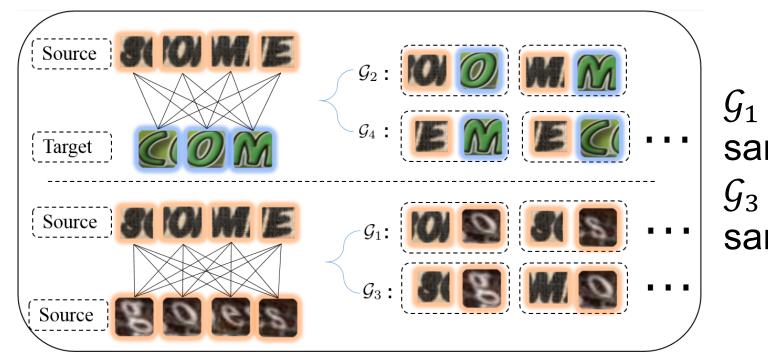


Attention mechanism with Inclusive attending process

Define $\alpha_{t,i}$ as the attending weight of the t-th character

$$\begin{split} \alpha_{t,j} &= \frac{exp(e_{t,j})}{\sum_{i=1}^{M} exp(e_{t,i})} & \alpha_{t,j}' = \lambda \alpha_t \\ &+ \eta \\ e_{t,j} &= w^T tanh(Ws_{t-1} + Vx_j + b) \\ & s.t. \quad A(t) \end{split}$$

Categories of character representation pair



✤ Adversarial learning target:

$$\mathcal{L}_D = -\sum_{i=1}^4 \sum_{S \in \mathcal{G}_i} y_{\mathcal{G}_i} log(D(\phi(\mathcal{S}))) \qquad \mathcal{L}_G = -\left[\sum_{S \in \mathcal{G}_2} y_{\mathcal{G}_i}\right]$$

attention learning

Define $\alpha'_{t,i}$ as the re-weighted attenting weight

$$egin{aligned} & -j + rac{1-\lambda}{\eta(1+\eta)} \sum_{i=1}^{\eta} A(t,j-i)(\eta+1-i) \ & -rac{1-\lambda}{(1+\eta)} \sum_{i=1}^{\eta} A(t,j+i)(\eta+1-i) \ & +j \pm i) = egin{cases} & lpha_{t,j\pm i} & 1 \leq j \pm i \leq M \ & lpha_{t,j} & otherwise \end{aligned}$$

 \mathcal{G}_1 / \mathcal{G}_2 : same class, same/different domain \mathcal{G}_3 / \mathcal{G}_4 : different class, same/different domain

$y_{\mathcal{G}_1} log(D(\phi(\mathcal{S}))) + \sum y_{\mathcal{G}_3} log(D(\phi(\mathcal{S})))$

Experiments

Comparison with the state-of-the-art

Method	SVT		IC03			IC13	IC15
	50	None	50	Full	None	None	None
Yao et al.(2014)[45]	75.9	-	88.5	80.3	-	-	-
Jaderberg <i>et al.</i> (2016)[21]	95.4	80.7	98.7	98.6	93.1	90.8	-
Shi et al.(2017)[46]	96.4	80.8	98.7	97.6	89.4	86.7	-
Lee&Osindero (2016)[3]	96.3	80.7	97.9	97.0	88.7	90.0	-
Cheng et al.(2018)[25]	96	82.8	98.5	97.1	91.5	-	68.2
Bai et al.(2018)[1]	96.6	87.5	98.7	97.9	94.6	94.4	73.9
Liu et al.(2018)[24]	96.8	87.1	98.1	97.5	94.7	94.0	-
Shi et al.(2018)[5]	99.2	93.6	98.8	98.0	94.5	91.8	76.1
Li et al.(2019)[47]	98.5	91.2	-	-	-	94.0	78.8
Luo et al.(2019)[48]	96.6	88.3	98.7	97.8	95.0	92.4	68.8
Zhang et al.(2019)[11]	-	84.5	-	-	92.1	91.8	-
Shi et al.(baseline)(2016)[26]	96.1	81.5	97.8	96.4	88.7	87.5	-
Cheng et al.(baseline)(2017)[2]	95.7	82.2	98.5	96.7	91.5	89.4	63.3
Shi et al.(baseline)(2018)[5]	-	91.6	-	-	93.6	90.5	-
Luo et al.(baseline)(2019)[48]	-	84.1	-	-	92.5	90.0	68.8
Source Only	96.8	85.2	99.0	97.5	92.3	91.6	68.2
FT w/ S+T	96.4	86.5	98.7	97.6	93.0	92.4	71.8
FASDA	96.5	88.3	99.1	97.5	94.8	94.4	73.3

Table 1. Results on SVT, ICDAR 2003, ICDAR 2013 and ICDAR 2015 datasets.

Comparison with baselines

Method	SVT	IC03	IC13	IC15
Source Only	19.6	44.1	46.8	14.5
FT w/ T	23.9	46.9	49.7	15.5
FT w/ S+T	25.1	52.3	51.1	16.4
FASDA-CR	27.5	55.8	54.9	18.6
$FASDA-CR^+$	28.8	56.8	56.6	19.1
$FASDA-IA-CR^+$	29.4	58.1	57.5	19.2

Table 2. Results on SVT, ICDAR 2003, ICDAR 2013 and ICDAR 2015 datasets.

FASDA shows the competitive performance with the state-of-the-art STR methods. And we can also see that FASDA performs clearly better than FT w/ S+T almost on all benchmarks.

Conclusion

We introduced FASDA to implement sequence-level domain adaptation for STR and it can maximize the character-level confusion between the source domain and the target domain to handle the scenarios that only have a few labeled samples. Our contribution can be summarized as below:

- annotations.

achieve sequence-level domain confusion in STR

the framework can be trained end-to-end with much fewer sequence-level