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Abstract In this paper, we present a new method that improves the measure of attribution and incorporates it into the integrated gradients

method. To be precise, rather than using the conventional chain-rule, we propose a method called guided non-linearity that propagates gradients
more effectively through non-linear units (e.g., ReLU and max-pool) so that only positive gradients backpropagate through non-linear units. Our
method is inspired by the mechanism of action potential generation in postsynaptic neurons, where the firing of action potentials depends on the
sum of excitatory (EPSP) and inhibitory postsynaptic potentials (IPSP). Experiments with 5 deep neural networks have shown that the proposed
method outperforms others in terms of the deletion metrics and yields fine-grained and more human-interpretable attribution.

We have proposed an improved method that generates human-interpretable attribution. Our

method modifies the back-propagation methods on ReLU and max-pool non-linearity used

in the path integral of IG. Our method achieves the state-of-the-art deletion score and

outperforms the IG method.

Conclusion

The conduction of action potential is controlled by

voltages in the synaptic cleft. The excitatory post-

synaptic potential, called EPSP, increase the

postsynaptic potential and inhibitory post-synaptic

potential, called IPSP, decrease the postsynaptic

potential. We think that non-linear units (ReLU and

max-pool) with positive gradients operate as EPSPs

and the negative gradients as IPSPs.

In our postulations, we have to focus on positive gradients to find the cause of the current 

prediction.

Fig 1. Diagram of synapses with different PSP

Motivation

Based on our observation, it is

natural to focus on the positive

gradients in non-linear units

(corresponding to axonal termin-

als) for attribution.

In other words, we have to focus

on positive gradients to find the

cause of the current prediction,

since neurons yielding IPSPs are

against the current prediction

results.

Fig 2. Comparison of our guided non-linearity with the normal backpropagation.

We computationally achieve this goal by clipping negatively valued gradients in non-linear

units to zero and use these new gradients in the path integral of IG,

For ReLU:

For max-pool:

where I (⋅) is an indicator function, ⊙ mean the elementwise product, i is the index for the

output of max-pool and j is the index for the input.

Proposed Method

To make attribution of an input x for a given CNN (denoted as F ), integrated gradients used

a line integral of gradients along the path from a baseline image x′ to the given input x :

where i is used as a pixel index.

For the implementation, integrated gradients is approximated with its discrete version,

Intuitively, IG is the sum of incremental contributions of the i-th pixel to the output (along

the path from x′ and x), where each contribution was evaluated with gradients.

Integrated Gradients

We have evaluated the proposed method with 5 CNN architectures (VGG16 , VGG19,

ResNet34, ResNet50 and GoogleNet) on 5,000 linearly sampled images from the validation

split of ImageNet classification database. For the quantitative evaluation, we have used the

deletion and insertion metrics which was designed to evaluate the quality of attribution

without human intervention. As shown, our method outperforms IG in both metrics (Fig 4.)

and outperforms all other methods in terms of the deletion metric and gets the insertion

metric score comparable to the state-of-the-art results (Tab. 1). Although the proposed

method yields a little lower insertion metric compared with perturbation methods, these

methods lack the power to localize targets as can be seen in Fig 3-(b) and (c).

Experimental Results

Fig 3. Comparison of attribution heatmaps using VGG16: (a) Input image (label: ferret, water buffalo), (b) Occlusion, (c) RISE, 
(d) Gradients, (e) Guided Backprop, (f) Grad-CAM, (g) Integrated Gradients (IG), and (h) ours. 

Tab 1. Comparison of deletion and insertion metric for 5 networks.

Fig 4. Illustrations of the deletion and insertion metrics for IG (upper) and our method (below) using ResNet50: (a), (e) input images  
(label: stone wall, Rhodesian ridgeback), (b), (f) attribution, (c), (g) curves for the deletion metric (IG: AUC=0.338/0.164, 
our method: AUC=0.125/0.045 respectively), (d), (h) curves for insertion metric (IG: AUC=0.597/0.774, our method: 
AUC=0.918/0.981 respectively).


