- Can data placement be effective for Neural Networks classification tasks? Introducing the Orthogonal Loss
- B. Cancela, V. Bolón-Canedo & A. Alonso-Betanzos

Laboratory for Research and Development in Artificial Intelligence (LIDIA), CITIC Research Center, University of A Coruña, Spain

Introduction

- Cross-entropy classification loss aims to separate the deep features between classes as much as possible:
- ► It does not matter where the deep features are placed, as long as they are clearly separated.
- Softmax score establishes how confident we are that an input belong to one class compared to the other classes.

This paper presents **two main contributions**:

- Two loss functions that aim to avoid deep features to appear in the projection of the wrong class. They need the last layer to be fixed during training (preferably orthogonal).
- ► A variant to the softmax function, aiming to provide a more accurate label confidence.

Experimental Results on Loss Functions

- ► Tested in 5 different datasets using two networks.
- ► The results are better than using the cross-entropy loss.

WRN-16-4	CE (fixed classifier)	CE	EOL	TOL
MNIST	99.67 ± 0.02	99.64 ± 0.02	99.64 ± 0.02	99.66 ± 0.01
Fashion-MNIST	95.31 ± 0.10	95.26 ± 0.14	$\textbf{95.47} \pm \textbf{0.13}$	95.21 ± 0.18
CIFAR-10	94.59 ± 0.13	94.59 ± 0.17	$\textbf{94.88} \pm \textbf{0.13}$	94.75 ± 0.10
CIFAR-100	74.95 ± 0.09	74.70 ± 0.24	74.92 ± 0.09	$\textbf{75.39} \pm \textbf{0.18}$
STL-10	86.19 ± 0.35	85.70 ± 0.21	$\textbf{86.65} \pm \textbf{0.34}$	$\textbf{86.71} \pm \textbf{0.28}$

Results on the Softmax Variant

► Whenever the confidence in is high, our variant is less prone to assign a wrong class.

VGG	CE (fixed classifier)	CE	EOL	TOL
MNIST	99.57 ± 0.01	99.57 ± 0.04	99.57 ± 0.06	$\textbf{99.64} \pm \textbf{0.01}$
Fashion-MNIST	94.26 ± 0.13	94.27 ± 0.07	$\textbf{94.35}\pm\textbf{0.05}$	$\textbf{94.45}\pm\textbf{0.14}$
CIFAR-10	91.70 ± 0.13	91.55 ± 0.17	$\textbf{92.03}\pm\textbf{0.13}$	$\textbf{91.82}\pm\textbf{0.12}$
CIFAR-100	66.38 ± 0.67	63.13 ± 0.80	69.95 ± 0.19	69.90 ± 0.34
STL-10	79.78 ± 0.56	78.27 ± 0.23	$\textbf{81.39} \pm \textbf{1.08}$	$\textbf{80.44} \pm \textbf{0.79}$

► The difference against cross-entropy loss is higher when reducing the training size.

Conclusions

- Deep features can be effectively placed without losing performance (sometimes even better).
- ► It obtains better results when the number of training samples is low.
- The softmax variant provides a better degree of certainty in the probability outputs.
- Deep features placed in orthogonal projections have interesting properties.

— 25th International Conference on Pattern Recognition 2021 —