MetaMix: Improved Meta-Learning with Interpolation-based Consistency Regularization

Yangbin Chen¹, Yun Ma², Tom Ko³, Jianping Wang¹, Qing Li²

1. City University of Hong Kong 2. The Hong Kong Polytechnic University 3. Southern University of Science and Technology

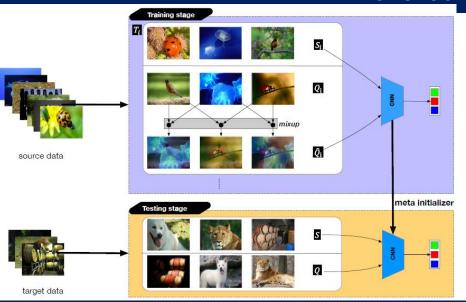
BACKGROUND

- Few-Shot Learning (FSL) problem is a machine learning problem that learns with limited labelled data of the target tasks by incorporating external source data with a different distribution.
- Few-Shot Classification is a few-shot learning task defined as N-way, K-shot, where N is the number of classes in the target task and K is the number of labelled examples per class.
- Model-Agnostic Meta-Learning (MAML) and its variants aim to train a model, which can adapt quickly to any new tasks using only a few examples.

MOTIVATION

- Conventional meta-learning algorithms face meta-overfitting problems, where the learned decision boundary stays too close to the limited labelled examples in few-shot classification tasks.
- The Empirical Risk Minimization (ERM) allows large neural networks to memorize (rather than generalize from) the training data.
- We aim to propose a regularization technique to solve the meta-overfitting problem.

METHODOLOGY



```
Algorithm 1 MetaMix with MAML
Require: p(T): distribution over tasks
Require: S_i: support set; Q_i: query set
Require: \alpha, \beta: learning rate
Require: \check{\alpha}: Beta distribution parameter
Require: mix_{\lambda}(a,b) = \lambda a + (1-\lambda)b, \lambda \sim \mathbf{B}(\check{\alpha},\check{\alpha})
  1: Randomly initialize model parameters \theta
  2: while not done do
             Sample a batch of episodes \mathcal{T}_i \sim p(\mathcal{T})
 3:
             for all \mathcal{T}_i do
 4:
                   Sample a support set S_i = \{(x_j, y_j)\}_{j=1}^J
 5:
                   Evaluate \nabla_{\theta} \mathcal{L}_{S_i}(f_{\theta}) using S_i and \mathcal{L}_{S_i}(f_{\theta})
 6:
 7:
                  Compute adapted parameters with gradient de-
      scent: \theta'_i = \theta - \alpha \cdot \nabla_{\theta} \mathcal{L}_{\mathcal{S}_i}(f_{\theta})
                   Sample a query set Q_i = \{(x_z, y_z)\}_{z=1}^Z
  8:
       Randomly select pairs of \{(x_m,y_m)\}_{m=1}^Z, \{(x_n,y_n)\}_{n=1}^Z \text{ from } \mathcal{Q}_i
                   Randomly
                                                                                       examples
 9:
                  \begin{split} \hat{x}_z &= mix_\lambda(x_m, x_n), \hat{y}_z = mix_\lambda(y_m, y_n) \\ \text{Get new query set } \hat{\mathcal{Q}}_i &= \{(\hat{x}_z, \hat{y}_z)\}_{z=1}^Z \end{split}
10:
11:
12:
             end for
             Update \theta \leftarrow \theta - \beta \cdot \nabla_{\theta} \sum_{i} \mathcal{L}_{\hat{O}_{\epsilon}}(f_{\theta'_{\epsilon}})
13:
14: end while
```

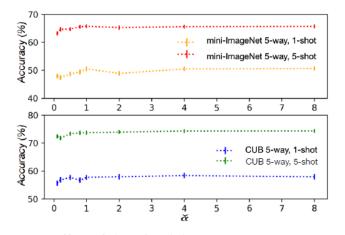
EXPERIMENT

Performance comparison of MetaMix and baseline approaches on 5-way classification tasks over three datasets

	mini-ImageNet		CUB		FC100	
Models	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
Matching Network	50.47 ± 0.80	64.83 ± 0.67	57.70 ± 0.87	71.42 ± 0.71	36.97 ± 0.67	49.44 ± 0.71
Prototypical Network	49.33 ± 0.82	65.71 ± 0.67	51.34 ± 0.86	67.56 ± 0.76	36.83 ± 0.69	51.21 ± 0.74
Relation Network	50.48 ± 0.80	65.39 ± 0.72	59.47 ± 0.96	73.88 ± 0.74	36.40 ± 0.69	51.35 ± 0.69
MAML	48.18 ± 0.78	63.05 ± 0.71	54.32 ± 0.91	71.37 ± 0.76	35.96 ± 0.71	48.06 ± 0.73
MetaMix+MAML	50.51 ± 0.86	65.73 ± 0.72	57.70 ± 0.92	73.66 ± 0.74	37.09 ± 0.74	49.31 ± 0.72
FOMAML	45.22 ± 0.77	60.97 ± 0.70	53.12 ± 0.93	70.90 ± 0.75	34.97 ± 0.70	47.41 ± 0.73
MetaMix+FOMAML	47.78 ± 0.77	63.55 ± 0.70	54.81 ± 0.97	72.90 ± 0.74	36.48 ± 0.67	49.48 ± 0.71
MetaSGD	49.93 ± 1.73	64.01 ± 0.90	56.19 ± 0.92	69.14 ± 0.75	36.36 ± 0.66	49.96 ± 0.72
MetaMix+MetaSGD	50.60 ± 1.80	64.47 ± 0.88	57.64 ± 0.88	70.50 ± 0.70	37.44 ± 0.71	51.41 ± 0.69
MTL	61.37 ± 0.82	78.37 ± 0.60	71.90 ± 0.86	84.68 ± 0.53	42.17 ± 0.79	56.84 ± 0.75
MetaMix+MTL	62.74 ± 0.82	79.11 ± 0.58	73.04 ± 0.86	86.10 ± 0.50	43.58 ± 0.73	58.27 ± 0.73

EXPERIMENT

Effect of Beta distribution

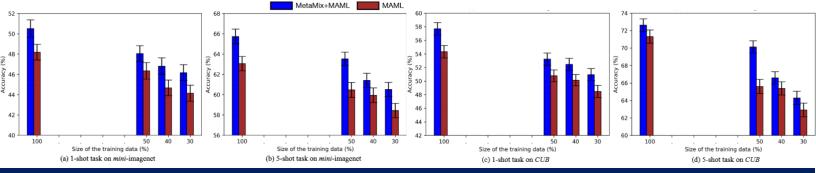


• Effect of mixup on different sets

		<i>mini</i> -In	nageNet	CUB		
	Set(s)	1-shot	5-shot	1-shot	5-shot	
	Q	$\textbf{50.51} \pm \textbf{0.86}$	$\textbf{65.73} \pm \textbf{0.72}$	$\textbf{57.70} \pm \textbf{0.92}$	$\textbf{73.66} \pm \textbf{0.74}$	
	S	44.03 ± 0.79	53.74 ± 0.81	49.12 ± 0.96	63.27 ± 0.89	
	Q+S	48.36 ± 0.81	64.06 ± 0.72	54.32 ± 0.93	70.30 ± 0.75	
w/	o MetaMix	48.18 ± 0.78	63.05 ± 0.71	54.32 ± 0.91	71.37 ± 0.76	

• Effect of size of training data

	mini-ImageNet		CUB		FC100	
Models	1-shot	5-shot	1-shot	5-shot	1-shot	5-shot
MAML(100%)	48.18 ± 0.78	63.05 ± 0.71	54.32 ± 0.91	71.37 ± 0.76	35.96 ± 0.71	48.06 ± 0.73
MetaMix+MAML(100%)	50.51 ± 0.86	65.73 ± 0.72	57.70 ± 0.92	73.66 ± 0.74	37.09 ± 0.74	49.31 ± 0.72
MAML(50%)	46.34 ± 0.82	60.47 ± 0.73	50.78 ± 0.86	65.60 ± 0.81	35.38 ± 0.71	47.93 ± 0.78
MetaMix+MAML(50%)	48.04 ± 0.79	63.52 ± 0.67	53.22 ± 0.91	70.13 ± 0.70	36.35 ± 0.74	48.11 ± 0.69



CONTRIBUTIONS

- We propose MetaMix as a regularization technique, which can be integrated with many meta-learning algorithms, including MAML and its variants, and improve their performance.
- MetaMix with MAML-based algorithms perform more robust with the reduction of training data, compared with original MAML-based algorithms.
- MetaMix with MTL achieves state-of-the-art performance.

