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Generatinga compact and non-redundant summary fora given video
without missing significant information.
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Contributions at a Glance

* We propose a novel dual attention capsule network model, which can
effectively incorporate the short- and long-term temporal dependencies

among video frames for summarization.

Our proposed video summarization is parallelizable, which can easily
handle longerterm dependencies among video frames than the
RNN/LST M-based approaches.

Experimental results show that our proposed method owns stronger
learning ability, and is competitivewith existing state-of-the-art methods.
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Feature Extraction of

Video Frames Within and Between Clips

Experimental Results

Dual Attention Feature Refinement

Two-5tream Capsule Network for
Feature Fusion and Frame Labeling

Ablation study of our method T and p results compared with SOTA F-score(%0) results compared with SOTA
Method SumMe TVSum LELEEE =l
Ours-local 452 58.3 Metric Kendall's T | Spearman's p| KendallsT |Spearman's p = (e A T Cc A T
dpplSTM [5] | 386 | 416 | 407 | 542 | 57.9 | 56.9
Ours-global 454 8.5 Random 0.000 0.000 0.000 0.000 SU;;DGAN [ 36] T =
DR-DSN,, [7 0.034 0.041 0.025 0.039 -GAN,, . : = . =
Ours-fc 466 587 o [7] .
5 ey S04 dppLSTM [5] 0.040 0.049 0.042 0.055 DR-DSN,, [7] | 421 | 439 | 426 | 581 | 59.8 | 589
il e v Ours 0.063 0.059 0.058 0.065 SASUP[35] | 453 | - - | s82| - -
CSNet,,, [21] | 486 | 487 | 441 | 585 | 57.1 | 574
Ours 475 | 493 | 45.2 | 59.4 | 59.8 | 59.2

An example summary generated by our approach
on the “Bearpark climbing” video
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