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Introduction
In this paper, we introduce two novel modules for Spatio-temporal 
Graph Convolutional Networks (ST-GCN) [1], namely, the Graph 
Vertex Feature Encoder (GVFE) and the Dilated Hierarchical Te-
mporal Convolutional Network (DH-TCN). GVFE learns appropr-
iate vertex features for action recognition by encoding raw skel-
eton data into a new feature space, while DH-TCN is capable of 
capturing both short-term and long-term temporal dependencies 
using a hierarchical dilated convolutional network. The use of 
GVFE and DH-TCN results in a smaller number of layers and par-
ameters; thus the required training time and memory are reduced.
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In this paper, two novel modules for ST-GCN based methods  
have been proposed called GVFE and DH-TCN. These modules 
enable the reduction of the number of needed blocks and 
parameters while conserving almost the same or improving  the 
recognition accuracy.

Spatio-temporal Graph Convolutional Networks (ST-GCNs) [1] 
have shown great performance. However:

Method
NTU-60 NTU-120 Kinetics

Xsub / Xview Xsub / Xview Top1 / Top5

Skelemotion 76.5 / 84.7 67.7 / 66.9 -

Pose Ev. Map 91.7 / 95.3 64.6 / 66.9 -

ST-GCN (10b) [1] 81.5 / 88.3 72.4 / 71.3 30.7 / 52.8

Ours (ST-GCN) (4b) 79.6 / 88.0 72.3 / 71.7 29.0 / 50.9

AS-GCN (10b) [2] 86.8 / 94.2 77.7 / 78.9 34.8 / 56.5

Ours (AS-GCN) (4b) 86.4 / 92.9 79.2 / 81.2 -

Green:   BatchNorm
Blue:      ReLU
Orange: 2D Conv

Vertex features containing raw skeleton data might be not 
discriminative enough, since they are not learned in an 
end-to-end-manner.

Temporal dependencies are modeled by a single temporal 
convolutional layer and, consequently, critical long-term 
dependencies might not be consistently described.

They make use of a considerable number of ST-GCN 
blocks (10 in most cases).

A: GVFE

B: DH-TCN

• GVFE is directly placed before the first ST-GCN block.
• It is trained in an end-to-end manner with the entire network.
• It maps 3D skeleton coordinates from the Cartesian 

coordinate system ℝ3 to a learned feature space ℳ ⊆ ℝ𝐶𝐶𝑜𝑜𝑜𝑜𝑜𝑜

of higher dimensionality.
• This module preserves the skeleton structure.

• 𝑓𝑓𝑖𝑖𝑖𝑖
1 𝑣𝑣𝑖𝑖 = 𝑊𝑊𝑖𝑖

𝑇𝑇𝐶𝐶𝑇𝑇 ∗ 𝑓𝑓𝑖𝑖𝑖𝑖
1 𝑣𝑣𝑖𝑖 ,  where {𝑊𝑊𝑖𝑖

𝑇𝑇𝐶𝐶𝑇𝑇} is the collection of 
tensors containing the Temporal Convolutional Network 
(TCN) kernel filters.  

Applicable to any graph-based network, better generaliza-
tion, more sufficient feature space for action recognition.

Encodes both short-term and long-term dependencies.
Both GVFE and DH-TCN require fewer ST-GCN blocks.

• DH-TCN is composed of 𝑁𝑁 successive dilated temporal 
convolutions and it replaces the temporal convolutions in the 
last ST-GCN block.

• Each layer output 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑘𝑘,𝑖𝑖) of order 𝑛𝑛 of DH-TCN is obtained as:

𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑘𝑘,𝑖𝑖) = 𝐹𝐹 𝑊𝑊𝑖𝑖

𝐷𝐷𝐷𝐷 ∗𝑖𝑖 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
𝑘𝑘,𝑖𝑖−1 , with 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

(𝑘𝑘,0) = 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡
(𝑘𝑘), 𝑓𝑓𝑜𝑜𝑜𝑜𝑡𝑡

(𝑘𝑘) the
output feature map from the Spatial GCN block and {𝑊𝑊𝐷𝐷𝐷𝐷}
the trainable temporal filters.
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