Vertex Feature Encoding and Hierarchical Temporal Modeling in a Spatio-Temporal Graph Convolutional Network for Action Recognition

Konstantinos Papadopoulos, Enjie Ghorbel, Djamila Aouada, Björn Ottersten SnT, University of Luxembourg Email: {firstname.lastname}@uni.lu

Introduction

Milan, 10-15 January 2021

In this paper, we introduce two novel modules for Spatio-temporal Graph Convolutional Networks (ST-GCN) [1], namely, the Graph Vertex Feature Encoder (GVFE) and the Dilated Hierarchical Temporal Convolutional Network (DH-TCN). GVFE learns appropriate vertex features for action recognition by encoding raw skeleton data into a new feature space, while DH-TCN is capable of capturing both short-term and long-term temporal dependencies using a hierarchical dilated convolutional network. The use of GVFE and DH-TCN results in a smaller number of layers and parameters; thus the required training time and memory are reduced.

Motivation

Spatio-temporal Graph Convolutional Networks (ST-GCNs) [1] have shown great performance. However:

Vertex features containing raw skeleton data might be not discriminative enough, since they are not learned in an end-to-end-manner.

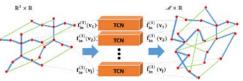
Temporal dependencies are modeled by a single temporal convolutional layer and, consequently, critical long-term dependencies might not be consistently described.

They make use of a considerable number of ST-GCN blocks (10 in most cases).

Proposed Approach

A: GVFE

- GVFE is directly placed before the first ST-GCN block.
- It is trained in an end-to-end manner with the entire network.
 It maps 3D skeleton coordinates from the Cartesian
 coordinate system P³ to a learned feature space M ⊂ P^Cout
- coordinate system \mathbb{R}^3 to a learned feature space $\mathcal{M} \subseteq \mathbb{R}^{C_{out}}$ of higher dimensionality.
- This module preserves the skeleton structure.

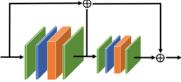


• $\hat{f}_{in}^{(1)}(v_i) = W_i^{TCN} * f_{in}^{(1)}(v_i)$, where $\{W_i^{TCN}\}$ is the collection of tensors containing the Temporal Convolutional Network (TCN) kernel filters.

Applicable to any graph-based network, better generalization, more sufficient feature space for action recognition.

B: DH-TCN

- DH-TCN is composed of *N* successive dilated temporal convolutions and it replaces the temporal convolutions in the last ST-GCN block.
- Each layer output $f_{temp}^{(k,n)}$ of order *n* of DH-TCN is obtained as: $f_{temp}^{(k,n)} = F\left(W_t^{DH} *_i f_{temp}^{(k,n-1)}\right)$, with $f_{temp}^{(k,0)} = f_{out}^{(k)}$, $f_{out}^{(k)}$ the output feature map from the Spatial GCN block and $\{W^{DH}\}$ the trainable temporal filters.



Green: BatchNorm Blue: ReLU Orange: 2D Conv

Encodes both short-term and long-term dependencies. Both GVFE and DH-TCN require fewer ST-GCN blocks.

Experimental Results

Method	NTU-60	NTU-120	Kinetics
	Xsub / Xview	Xsub / Xview	Top1 / Top5
Skelemotion	76.5 / 84.7	67.7 / 66.9	-
Pose Ev. Map	91.7 / 95.3	64.6 / 66.9	-
ST-GCN (10b) [1]	81.5 / 88.3	72.4 / 71.3	30.7 / 52.8
Ours (ST-GCN) (4b)	79.6 / 88.0	72.3 / 71.7	29.0 / 50.9
AS-GCN (10b) [2]	86.8 / 94.2	77.7 / 78.9	34.8 / 56.5
Ours (AS-GCN) (4b)	86.4 / 92.9	79.2 / 81.2	-

Conclusion

In this paper, two novel modules for ST-GCN based methods have been proposed called GVFE and DH-TCN. These modules enable the reduction of the number of needed blocks and parameters while conserving almost the same or improving the recognition accuracy.

References

 Yan et al. "Spatial temporal graph convolutional net-works for skeleton-based action recognition", AAAI 2018.
 Li, et al. "Actional-Structural Graph Convolutional Net-works for Skeleton-based Action Recognition", CVPR 2019.

Acknowledgements

This work was funded by the National Research Fund (FNR), Luxembourg, under the project C15/IS/10415355/ 3D-ACT/Björn Ottersten. We would, also, like to thank Christian Hundt from NVIDIA AI Technology Center Luxembourg for his valuable input and fruitful discussions.

https://cvi2.uni.lu/