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Abstract -This paper addresses the problem of active visual place recognition (VPR) from 

a novel perspective of long-term autonomy. In our approach, a next-best-view (NBV) 

planner plans an optimal action-observation-sequence to maximize the expected cost-

performance for a visual route classification task. A difficulty arises from the fact that the 

NBV planner is trained and tested in different domains (times of day, weather conditions, 

and seasons). Existing NBV methods may be confused and deteriorated by the domain-

shifts, and require significant efforts for adapting them to a new domain. We address this 

issue by a novel deep convolutional neural network (DNN) -based NBV planner that does 

not require the adaptation step.

Research Goal

Background : VPR (Long-term visual place recognition )

Goal : classify ego-centric view images into pre-defined place classes

Standard solution : passive setting
the robot’s action is determined by a predefined control rule, such as a 
constant speed motion rule.

Limitations : 
i. viewpoints are not necessarily optimized                                                         

for the VPR task.
ii. produce an unnecessarily large number                                                            

of redundant observations.

Our approach : 
i. active VPR in visual route classification 
ii. domain-invariant NBV planner

Proposal: NBV as POMDP (partially observable decision process)

State: s=(x,c)
c: hidden place class
x: viewpoint wrt the place c
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Proposed approach

Result References

The goal of an NBV planner is to plan an optimal action-observation-sequence 
that is expected to maximally improve the cost performance of VPR.

Training planner

Training VPR Planning NBV

Following the definition by Kaelbling, we 
define POMDP as a six-tuple (S,A,T,R,W,O)

a. the conventional passive single-view VPR
b. a multi-view VPR
c. the proposed multi-view VPR method

The figure below shows examples of the image 
sequences acquired at the planned viewpoints.
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