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SEMANTIC SCENE COMPLETION

OUR APPROACH

RGB edge
extraction and

projectionto

Given an RGB-D image, the goal of semantic scene completion is to

infer a complete 3D occupancy grid with associated semantic labels.

Previous works completely neglect the RGB channels from the input

data or require a complex two step training process to merge RGB

and depth data.

Our Edge-Net representation encodes colour information in 3D

space using edge detection and flipped truncated signed distance

(F-TSDF), which improves semantic completion scores especially in
hard to detect classes, with an end-to-end 3D deep neural network.

DATASETS
SUNCG - Synthetic Scenes

" (a) SUNCG dataset
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(c) Synthetic depth and volumetric ground truth

(b) 3D Scene

NYUDv2 —Indoor RGB-D Scenes
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Our deep CNN is
trained on SUNCG
and fine-tuned on
NYUDv2.

Feed CNN with 3D
encoded edgesand

depthvolumes. Apply F-TSDF to 3D

edges
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Conv3D(12,1,1)

Conv3D(channels, size, strides) + Softmax + Categorical Cross Entropy Loss ResNet module with optional dilation

Using edges and F-TSDF, we address the data sparsity problem faced by previous
solutions that tried to explore the RGB components of the RGB-D data. Our
solution is an end-to-end network architecture that may be trained as a whole and

achieves state-of-the-art results.
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QUANTITATIVE RESULTS
* Newstate-of-the-artresulton SUNCG(70.3%
avg. loU)

e Qursolutionsurpassed previous end-to-end
approacheson NYUDv2 (33.7% avg. loU)

* EdgeNet'sresultsare similarto non end-to-end
solutions, with amuch simplertraining pipeline.
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SUMMARY OF THE CONTRIBUTIONS
¢ A newend-to-end network architecture

* Anewstrategytoencode information obtained
fromRGB

* Improvementoverthe state-of-the-artresult
on SUNCG

* Anefficientand lightweight training pipelinefor
the task




