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Introduction Empirical Results

Motivation

Existing self-supervised learning methods usually define a label free surrogate
task to provide a pretext supervision signal for feature learning. For example,
AutoEncoder (AE) targets at reconstructing original data by minimizing the error
between network output and corresponding data. Variational Auto-Encoder (VAE)
and Generative Adversarial Network (GAN) are also taking the data content as
supervision, though they have very different objectives. These methods focus too

We conduct an extensive evaluation of our method on the most commonly used
Image datasets, 1.e., CIFAR10, CIFAR100, STL10, and SVHN. The classification
task Is chosen to evaluate the discriminability of the representation learned by our
transformation regression learning method.

Data sets and Protocol
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comes from. Fundamentally, they usually construct a classification task with finite
discrete labels, resulting in insufficient supervisory signals, which In turn harms
the performance of representation learning.

Protocol: 1) Train a network in a self-supervised way to learn representations. 2)
Extract representations from different layers. 3) Use a classification model to
validate the quality of representations (higher accuracy corresponds to better quality)

Our Contributions Result
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best performance.

Algorithm 1 Image Representation Learning Algorithm by
Transformation Regression

Input: Image Dataset X; Transformation function 7 (-, y)
Neural Network F(-, W).
Output: The parameters of the neural network W.
Initialize the neural network parameter W:
for t in 1 to T do
for 2in 1 to n do
Random sample a value y;;
Apply transformation: x; = T (x;: ;).
Forward pass to get the output F (x;: W).
end for
Compute the loss L= =" | || F (%;; W) — vill5-
Update the W by gradient descent.
end for
return W.

Conclusion

We propose a new Image representation learning method by constructing a
regression task whose target Is to predict the continuous parameters of some
transformations applied to the Input image. Extensive experiments on various
Image datasets validate the effectiveness and discriminability of representation
learned by our proposed transformation regression method

Future work iIncludes: 1) exploring other types of transformations like image
flipping, cropping, and color jitter; and 2) eliminating the edge effect when
applying some transformations like image rotation.




