ICPR2020

Temporal Extension Module for Skeleton-based Action Recognition

Yuya Obinata and Takuma Yamamoto (FUJITSU LABORATORIES LTD.)

1. Overview

- Expectation of Action recognition
 - Applications in human behavior understanding and human social behavior
- Mainstream method in action recognition
 - Methods using RGB images
 - Methods using sequence of skeletons
 - Low-cost computing resources
 - Robust by noise from various illumination conditions

2. Motivation

ST-GCN (AAAI 2018)

- The well-known method using graph convolutional network
 - Represents human joints as vertices and their natural connections in human body as edges vertex
 - Draws attention owing of high performance
- Temporal graph
 - Adds edges to same vertex on temporal dimension
 - Extracts feature of trajectory of same joints
- Drawback
 - Cannot extract feature of correlative movement between each joint on the inter-frame
 - Does not add edges to another vertex on temporal graph

3. Proposed Method

- Temporal Extension Module (TEM)
 - Extends of temporal graph on inter-frame
 - Adds edges to not only same vertex but also neighboring multiple vertices
 - Sets multiple subsets based on length to center of gravity
 - Adds info of kinematics correlation
 - Advantage
 - Extracts feature of correlative movement between each joint on inter-frame
 - Good for recognition of action that these adjacent joints often move together, such as "throw."
 - Apply to existing model easily

4. Implementation of TEM

- ST-GCN+TEM
 - We attach our module between *S-GC and T-GC.
 - To expand sampling area for temporal dimension gradually
 - We do not change the structure of conventional convolutions.
 - Our module can readily apply to many existing methods.

5. Ablation Study

Methods with TEM outperform without TEM. TABLE I. COMPARISONS OF THE RECOGNITION ACCURACY THE MODELS WITH TEM AND WITHOUT TEM

Mathada	NTU-RGB+D		Kinetics-Skeleton	
methods	CS (%)	CV (%)	Top-1 (%)	Top-5 (%)
ST-GCN	82.6	88.7	32.5	54.9
ST-GCN+TEM	85.2	90.2	34.5	56.7
2s-AGCN	88.6	95.2	36.7	59.8
2s-AGCN+TEM	88.7	95.8	38.6	61.6
MS-AAGCN	90.3	96.1	37.4	60.6
MS-AAGCN+TEM	91.0	96.5	38.0	61.4

6. Comparison of State-of-the-art

Best performance model with TEM achieves state-of-the-art performance.

1 Layer

Mathada	NTU-RGB+D	
methods	CS (%)	CV (%)
ST-GCN [7]	81.5	88.3
2s-AGCN [9]	88.5	95.1
GCN-NAS [11]	89.4	95.7
DGNN [10]	89.9	96.1
MS-AAGCN [12]	90.0	96.2
BAGCN [22]	90.3	96.3
Sym-GNN [13]	90.1	96.4
MS-AAGCN+TEM(Ours)	91.0	96.5

Temporal graph of elbow

time

Output

ST-GCN+TEM

Methods

ST-GCN s-AGCN GNN I CN-NAS [1

Sym-GNN BAGCN [22

Top-5 (%)

60. 58

60.

*Spacial Graph Convolution and Temporal Graph Convolution

Sequence of skeletons

edge

