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1. Overview
B Expectation of Action recognition
® Applications in human behavior understanding and human social behavior
Sequence of

B Mainstream method in action recognition keletons
B Methods using RGB images
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B Methods using sequence of skeletons

* Low-cost computing resources

Action Class

* Robust by noise from various illumination conditions
2. Motivation
B ST-GCN (AAAI 2018)
= The well-known method using graph convolutional network .7 Temporal graph
% ot

- Represents human joints as vertices and their natural connections
in human body as edges

- Draws attention owing of high performance vertex edge, ]
® Temporal graph o
- Adds edges to same vertex on temporal dimension t-1
Lt time

« Extracts feature of trajectory of same joints
Temporal graph of elbow

® Drawback
« Cannot extract feature of correlative movement between each joint on the inter-frame
+ Does not add edges to another vertex on temporal graph

3. Proposed Method

B Temporal Extension Module (TEM) center of gravity

B Extends of temporal graph on inter-frame wrist \\ \
® Adds edges to not only same vertex but also elbow \gfamy
neighboring multiple vertices £2 shoulder \
. . |1
B Sets multiple subsets based on length to center of gravity e N
. . . . . t¥ time time
Adds info of kinematics correlation Temporal graph with TEM Subset on inter-frame
® Advantage
+ Extracts feature of correlative movement between each joint on inter-frame
+ Good for recognition of action that these adjacent joints often move together, such as “throw.”
= Apply to existing model easily
4. Implementation of TEM
B ST-GCN+TEM *Spacial Graph Convolution and Temporal Graph Convolution
B We attach our module between *S-GC and T-GC. Sequence of ST-GCN+TEM
skeletons

. . . I
- To expand sampling area for temporal dimension gradually 1 Laver

B We do not change the structure of conventional convolutions.
= Our module can readily apply to many existing methods.
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5. Ablation Study 6. Comparison of State-of-the-art
B Methods with TEM outperform without TEM.  m  Best performance model with TEM achieves state-of-the-art performance.
TABLE |. COMPARISONS OF THE RECOGNITION ACCURACY THE MODELS WITH TEM AND TABLE I1. COMPARISONS OF THE RECOGNITION ACCURACY WITH MS-AAGEN+TEM AND  TABLE 111, COMPARISONS OF THE RECOGNITION ACCURACY WITH 25-AGCN+TEM
WITHOUT TEM CURRENT STATE-OF-THE-ART METHODS ON NTU RGB+D DATASET AND CURRENT STATE-OF-THE-ART METHODS ON THE KINETICS- SKELETON
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