

How to define a rejection class based on model learning? Sarah Laroui¹, Eric Debreuve², Xavier Descombes¹, Bruno Leggio³, Florent Villiers³, Aurélia Vernay³ ¹UCA/Inria CRISAM/Laboratoire I3S/CNRS, Sophia Antipolis, France ,²UCA/CNRS/Inria CRISAM/ Laboratoire I3S, Sophia Antipolis, France, ³Bayer CropScience Disease Control Research Center, Lyon, France

Introduction

Supervised classification (Classifier = feature space splitter)

>optimize frontiers between classes (that appear in the learning set)

Rejection option added to a classifier (SVM [Mukherjee et al.], Deep Neural Network [Chow et al.])

System where the prediction model and the selection mechanism are optimized simultaneously **Our proposed method:**

Bayer Disease Control Research, Center focusing on Disease Control

Parameter tuning:

Features: Type of dimension reduction **GMM parameters:** nc* / Type of covariance matrix >Threshold learning: Option (1) / Method (2)

*Trained on ImageNet database

Best results with : (cross-validation on 20 folds) Variable importance, 1 vs. All, Misclassification \Rightarrow Classification accuracy =~ 94 % (91 % on known classes/98 % on rejection class)

Bayer AG Confidential Information

*nb = number / *nc = number of components

