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contributing expression features with each frame and + weighted feature fusion

take It as an image-based task by assembling these
features to model the facial activation. However, the
iIndividual features they learned from each frame focus
on different regions, because the facial expression
Intensity on different regions is dynamically changing
among the video frames. Such features can only icaph leaming
contribute limited strength to explore the dynamic
variation of expression as they do not concentrate on n,=[Hf HY ..HY, HL, .. HE"
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. : . . . . : Fig. 3: Example of the feature reconstruction in our GCN layer. First row: Origin facial images of "Disgust” in MMI dataset:;
the faCIa‘I aCtlva‘tIOn IN a'n Ce rtal N expreSSIOn reg |On " JTIIJ’IE — 7 ‘WE Second row: input features of GCN layer; Third row: output features of GCN layer. It clariﬁez that our GCN layer shares most
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contributing expression features among frames to helps model focus more on the corresponding expression regions (such as
A mouth and nose here).
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Moreover, the features coming from peak frames Aii = [Ain, Az, Agi—1), A1)
usually focus on important regions which have more A
1y TOCLE » J o't = f(A;M! ® A, H,W') : :
contributing information than those of non-peak frames. “ | :
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They should be considered more for final recognition. AT =A" —IrxOloss [0A z
weight = softmax(mean(A, dim = 0)) L e e e s L s e s e s
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Fig. 4: Visualization of expression intensity weights for 16 steps on three datasets respectively. The horizontal axis represents

T = E el ght i H i the step number in each video sequence. The values of temporal weighs are given in the vertical axis through a sigmoid
function, which refer to the expression intensity of each frame in the dynamic expression variation.
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