

An Efficient Empirical Solver for Localized Multiple Kernel Learning via DNNs

Ziming Zhang

Department of Electrical & Computer Engineering

Worcester Polytechnic Institute

Problem Definition

• Multiple kernel learning (MKL)

$$f_{Simple}(z) = \sum_{i} \alpha_{i} y_{i} \left[\sum_{m} \beta_{m} \mathbf{K}_{m}(z, x_{i}) \right]$$

Localized MKL (LMKL)

$$f_{Loc}(z) = \sum_{i} \alpha_{i} y_{i} \left[\sum_{m} \eta_{m}(z) \mathbf{K}_{m}(z, x_{i}) \eta_{m}(x_{i}) \right] + b$$

$$\underbrace{\sum_{i} \alpha_{i} y_{i}}_{\text{Gating function}} \int_{\mathbb{R}^{n}} \frac{1}{2} \left[\sum_{i} \alpha_{i} y_{i} \left[\sum_{i} y_{i} y_{i} \left[\sum_{i} y_{i} y_{i} \left$$

Worcester Polytechnic Institute

Related Work

LMKL

- In the literature, the classifier parameters are shared among all the data samples, with some prior on the gating function that may be wrong empirically
- Large-scale MKL
 - To the best of our knowledge, no such approaches are proposed for LMKL
- Optimization
 - Many approaches (e.g. SILP-MKL, SPG-GMKL, etc.) were proposed from this perspective
- In contrast, we propose a deep learning solution
 - using an attentional network to approximate the unknown gating function
 - much faster training speed and much smaller memory footprint for large-scale LMKL with better accuracy

Our Approach

Motivation

$$\sum_{m} \eta_{m}(z) \mathbf{K}_{m}(z, x_{i}) \eta_{m}(x_{i}) = \sum_{m} \mathbf{K}_{m}(z, x_{i}) \mathbf{K}_{\eta_{m}}(z, x_{i})$$
$$f(z; \omega, \pi) = g \left(\sum_{m=1}^{M} h\left(\mathbf{K}(z); \omega\right) \otimes \mathbf{K}(z); \pi \right)$$

Cont.

• LMKL-Net

Some Results

	adult-8	news20	phishing	rcv1	real-sim	w7a	average
UNIFORM	81.94	93.33	46.16	96.37	96.56	90.37	84.12
SPG-GMKL	84.13	90.27	95.26	95.57	92.21	97.05	92.42
EasyMKL	84.57	91.32	96.74	95.08	94.23	97.95	93.32
LMKL	78.09	95.52	52.04	96.76	97.09	97.75	86.21
Lp-MKL	76.33	-	-	-	-	97.05	-
OBSCURE	84.22	94.68	97.25	96.55	96.94	98.50	94.69
Ours (with 10 kernels)	84.62	93.53	98.17	96.71	96.42	98.74	94.70
Ours (with 1K kernels)	85.43	94.06	98.70	97.32	96.25	98.76	95.09

Cont.

Worcester Polytechnic Institute

D

Conclusion

- LMKL-Net: A deep learning solution for LMKL
 - Using an attentional network to approximate the unknown gating function
 - Suitable for large-scale learning
 - Faster training speed, smaller memory footprint, and better accuracy
- For more details, please refer to our paper

