An Intransitivity Model for Matchup and Pairwise Comparison

Yan Gu*, Jiuding Duan, Hisashi Kashima
Graduate School of Informatics, Kyoto University

Abstract

Objectives - Predict pairwise matchup. - Unify several existing models on representation learning.

\section*{Intransitivity}

An intuitive example a rock-paper-scissors game, the pairwise matchup result is judged by three rules: \{paper \succ rock, rock \succ scissors and scissors \succ paper \}. A transitive model results in a transitive dominance paper \succ scissors, that violates the third rule scissors \succ paper. Examples sports tournaments; online games; election process.

Related works

Problem setting

- Candidate players i and $i \in \mathbf{P}$ with $|\mathbf{P}|=N$
-4-tuples $\left(i, j, n_{i}, n_{j}\right)$, and $i \succ j:=(i, j, 1,0)$.
- Matchup matrix $\mathbf{M} \in \mathcal{R}^{N \times N}$.
- $M_{i j}>0$ means item i has a comparative advantage over item j

1. Bradley-Terry Model (Bradley et al., 1952)

$$
\begin{equation*}
\operatorname{Pr}(i \succ j)=\frac{\exp \left(\gamma_{i}\right)}{\exp \left(\gamma_{i}\right)+\exp \left(\gamma_{j}\right)}=\frac{1}{\left.1+\exp \left(-M_{i j}\right)\right)}, \tag{1}
\end{equation*}
$$

where γ_{i} is the ability of winning for player i.

$$
M_{i j}=\gamma_{i}-\gamma_{j} .
$$

2. Blade-Chest-Inner Model (Chen et al., 2016a)

$$
\begin{equation*}
M_{i j}=\mathbf{x}_{i}^{\text {blade }}{ }^{\top} \mathbf{x}_{j}^{\text {chest }}-\mathbf{x}_{j}^{\text {blade }} \mathbf{x}_{i}^{\text {chest }}+\gamma_{i}-\gamma_{j}, \tag{2}
\end{equation*}
$$

3. Neural network framework of Blade-Chest (Chen et al., 2016b)

Top layer is the blade-chest-inner model (2):

$$
\operatorname{Pr}(i \succ j \mid g)=\sigma(M(i, j \mid g)) .
$$

4. Blade-Chest-Sigma Model (Duan et al., 2017)

$$
\begin{equation*}
M_{i j}=\mathbf{x}_{i}^{\top} \Sigma \mathbf{x}_{j}+\mathbf{x}_{i}^{\top} \Gamma \mathbf{x}_{i}-\mathbf{x}_{j}^{\top} \Gamma \mathbf{x}_{j}, \tag{3}
\end{equation*}
$$

where $\Sigma, \Gamma \in \mathcal{R}^{d \times d}$ are the transitive matrices.

Proposed method

- A generalized model with more expressiveness by a low-rank matrix.
- Neural Network framework of the generalized model.
- A quantitative evaluation of the existence of intransitivity in datasets.

Matchup function

Define the representation matrix as

$$
\begin{gathered}
\mathbf{X}^{\text {blade }}=\left(\mathbf{x}_{1}^{\text {blade }}, \ldots, \mathbf{x}_{N}^{\text {blade }}\right), \mathbf{X}^{\text {chest }}=\left(\mathbf{x}_{1}^{\text {chest }}, \ldots, \mathbf{x}_{N}^{\text {chest }}\right), \boldsymbol{\gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots, \gamma_{N}\right) . \\
(2) \Rightarrow \mathbf{M}=\mathbf{X}^{\text {blade }}{ }^{\top} \mathbf{X}^{\text {chest }}-\mathbf{X}^{\text {chest }} \mathbf{X}^{\text {blade }}+\boldsymbol{\gamma}^{\top} \mathbf{1}-\mathbf{1}^{\top} \boldsymbol{\gamma} .
\end{gathered}
$$

Replace the matrix product $\mathbf{X}^{\text {blade }}{ }^{\top} \mathbf{X}^{\text {chest }}$ by a new matrix \mathbf{Y} as

$$
\mathbf{Y}=\mathbf{X}^{\text {blade }}{ }^{\top} \mathbf{X}^{\text {chest }},
$$

which results in a general representation of the matchup matrix as

$$
\begin{equation*}
\mathbf{M}=\left(\boldsymbol{\gamma}^{\top} \mathbf{1}-\mathbf{1}^{\top} \boldsymbol{\gamma}\right)+\left(\mathbf{Y}-\mathbf{Y}^{\top}\right) \text { s.t. } \operatorname{rank}(\mathbf{Y}) \leq D . \tag{4}
\end{equation*}
$$

Objection (assuming i is the winner; same with MSE loss)

$$
\begin{equation*}
\Theta \Sigma_{(i, j)} \log \operatorname{Pr}(i \succ j \mid \Theta) . \tag{5}
\end{equation*}
$$

Top layer the generalized intransitivity model (4):

$$
\operatorname{Pr}(i \succ j)=\sigma\left(M_{i j}\right)=\sigma\left(Y_{i j}-Y_{j i}\right) .
$$

Figure: An illustration of the proposed generalized intransitivity framework

Properties

1. $\mathbf{Y}-\mathbf{Y}^{\top}$ can represent an arbitrarily complex matchup matrix by removing the rank constraint.
2. It is equivalent to the BT model when $\operatorname{rank}(\mathbf{Y})=0$.
3. It can represent the intransitivity when $\operatorname{rank}(\mathbf{Y})=1$:

$$
\mathbf{Y}=\left(x_{1}^{\text {blade }}, x_{2}^{\text {blade }}, \ldots, x_{N}^{\text {blade }}\right)^{\top}\left(x_{1}^{\text {chest }}, x_{2}^{\text {chest }}, \ldots x_{N}^{\text {chest }}\right),
$$

the matchup matrix without the strength terms becomes

$$
M_{i j}=x_{i}^{\text {blade }} x_{j}^{\text {chest }}-x_{i}^{\text {chest }} x_{j}^{\text {blade }} .
$$

Assume that $i \succ j$ and $j \succ k$ (i.e., $M_{i j}>0$ and $M_{j k}>0$), then taking $x_{i}^{\text {chest }}>0, x_{j}^{\text {chest }}<0$, and $x_{k}^{\text {chest }}>0$ shows $k \succ i\left(\right.$ i.e., $\left.M_{i k}<0\right)$.

Datasets and Experiments

- Intrans.: whether the dataset contains intransitivity
- No.IntPlayer: the fraction of players invovled in rock-paper-scissors
- Int.Ratio: the amount of the rock-paper-scissors-like relationship (\%)

Table: Summary of the real-world datasets

| Dataset | Players | | | Records | Intrans. |
| :---: | :---: | :---: | :---: | :---: | :---: | No.IntPlayer Int.Ratio 0

How does the proposed method perform?
Table: Test accuracy on the real-world datasets

Dataset	Bradley-Terry	Blade-Chest-Inner	Blade-Chest-Sigma	Neural BC	Proposed model
SushiA	0.6525 ± 0.0011	0.6546 ± 0.0006	0.6560 ± 0.0004	0.6630 ± 0.0004	$\mathbf{0 . 6 6 3 2} \pm \mathbf{0 . 0 0 0 3}$
SushiB	0.6257 ± 0.0025	0.6235 ± 0.0150	0.6414 ± 0.0019	0.6561 ± 0.0017	$\mathbf{0 . 6 5 6 3} \pm \mathbf{0 . 0 0 1 1}$
MovieLens100K	0.6785 ± 0.0005	0.6792 ± 0.0004	0.6789 ± 0.0003	0.6950 ± 0.0019	$\mathbf{0 . 6 9 7 3} \pm \mathbf{0 . 0 0 0 2}$
Election A5	0.6478 ± 0.0017	0.6489 ± 0.0011	0.6494 ± 0.0018	0.6550 ± 0.0030	$\mathbf{0 . 6 5 6 0} \pm \mathbf{0 . 0 0 1 8}$
Election A9	0.6028 ± 0.0003	0.6096 ± 0.0007	0.6047 ± 0.0008	0.6174 ± 0.0003	$\mathbf{0 . 6 1 7 5} \pm \mathbf{0 . 0 0 0 3}$
Election A17	0.5189 ± 0.0001	0.5305 ± 0.0010	0.5296 ± 0.0013	0.5582 ± 0.0003	$\mathbf{0 . 5 5 9 8} \pm \mathbf{0 . 0 0 0 2}$
Election A48	0.5993 ± 0.0001	0.6001 ± 0.0001	0.5996 ± 0.0001	0.6060 ± 0.0001	$\mathbf{0 . 6 0 5 6} \pm \mathbf{0 . 0 0 0 1}$
Election A81	0.6013 ± 0.0001	0.6018 ± 0.0001	0.6011 ± 0.0002	0.6194 ± 0.0001	$\mathbf{0 . 6 1 9 4} \pm \mathbf{0 . 0 0 0 1}$
SF4-5000	0.5079 ± 0.0078	0.5181 ± 0.0171	0.5358 ± 0.0049	0.5514 ± 0.0008	$\mathbf{0 . 5 4 9 6} \pm \mathbf{0 . 0 0 2 1}$
DotA	0.6334 ± 0.0077	0.6432 ± 0.0034	0.6420 ± 0.0051	0.6468 ± 0.0031	$\mathbf{0 . 6 4 8 5} \pm \mathbf{0 . 0 0 2 5}$
Pokemon	0.8157 ± 0.0094	0.8495 ± 0.0016	0.8187 ± 0.0168	0.8943 ± 0.0040	$\mathbf{0 . 8 9 4 9} \pm \mathbf{0 . 0 0 2 1}$

References

Bradley et al., 1952, Ran analysis of incomplete block designs: I. the method of paired comparisons. Chen et al., 2016a, Modeling intransitivity in matchup and comparison data.
Chen et al., 2016b, Predicting matchups and preferences in context.
Duan et al., 2017, A Generalized Model for Multidimensional Intransitivity.

