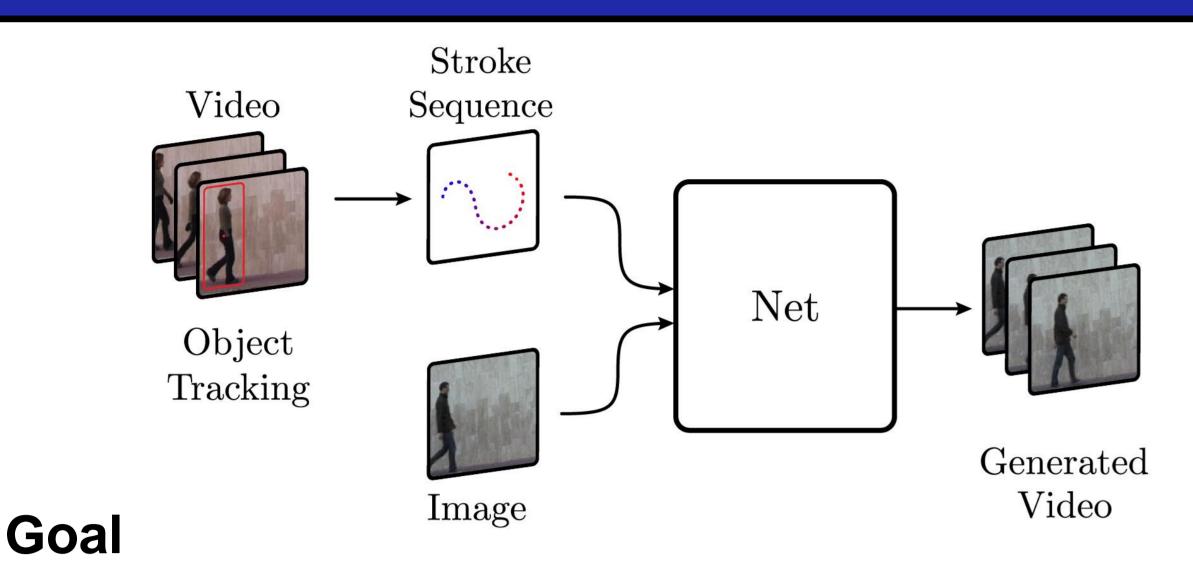


Learning to Take Directions One Step at a Time

Qiyang Hu¹, Adrian Wälchli¹, Tiziano Portenier¹, Matthias Zwicker² and Paolo Favaro¹ ¹University of Bern, Switzerland, ²University of Maryland, USA

¹{qiyang.hu, adrian.waelchli, tiziano.portenier, paolo.favaro}@inf.unibe.ch ²zwicker@cs.umd.edu

Video From a Motion Stroke Sequence



- Generate video conditioned on single image
- Give user control over generated trajectory of object

Challenges

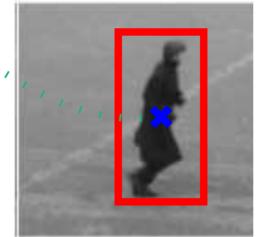
- Generating future without a "memory" of the past
- A single image contains much ambiguity for motion
- Temporally coherent sequence

Contribution

We address these challenges with a novel system that recurrently generates a video of arbitrary length from a single image and a sequence of strokes that guides the motion.

Motion Stroke Sequence Creation

Training: The motion stroke is a sequence of 2D points extracted from the bounding box center.



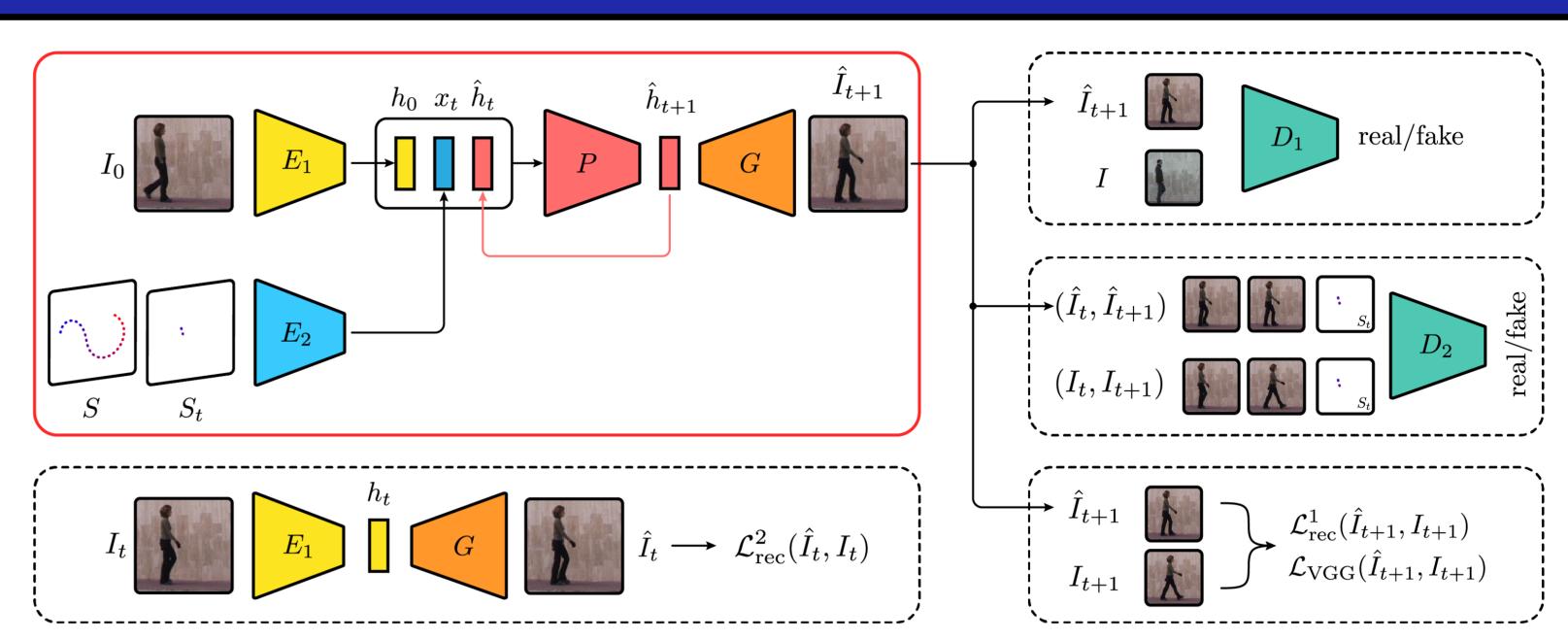
Test: Any stroke, but must start at center of object

Smoothness of Generated Motion

	walking		jogging		running		det.
	mean	std	mean	std	mean	std	
Denton et al. [1]	7.5	10.0	9.9	11.9	10.7	11.5	54.2
Li <i>et al</i> . [2]	7.4	9.1	10.1	11.3	8.7	9.9	54.9
Ours	7.2	7.7	8.2	9.1	9.2	10.5	87.1
Ground truth	4.3	5.7	5.3	5.8	7.4	6.8	100.0

We measure the smoothness of the generated motion as the rel. mean Euclidean distance (%) and std. of pose joints in consecutive frames for comparison.

Proposed Framework



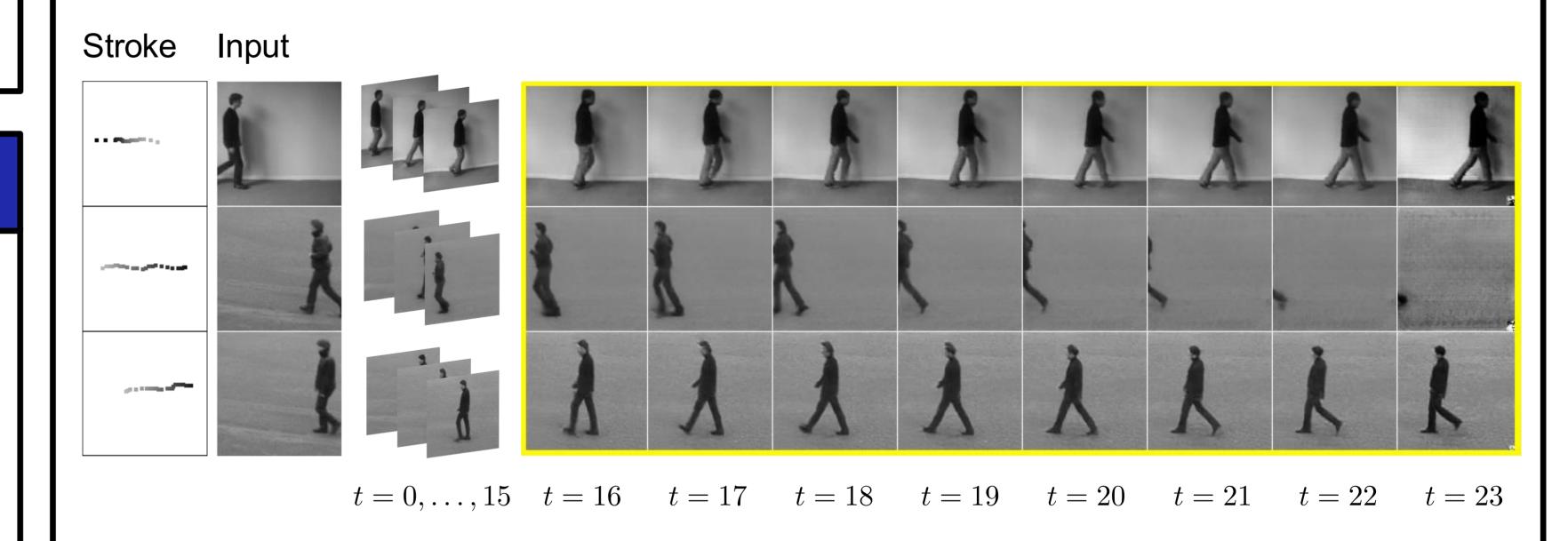
- Encoder E₁ extracts texture and initial conditions
- Encoder E₂ provides motion encoding from stroke
- Predictor P is applied recursively on features
- G generates temporally consistent image sequence
- D₁ and D₂ force distribution of pairs and single frames

Training

$$\min_{\theta_1} \max_{\theta_2} \mathcal{L}_{GAN}^1 + \lambda_0 \mathcal{L}_{GAN}^2 + \lambda_1 \mathcal{L}_{VGG} + \lambda_2 \mathcal{L}_{rec}^1 + \lambda_3 \mathcal{L}_{rec}^2$$

- Adversarial training of generator $\theta_1 = \{\theta_{E_1}, \theta_{E_2}, \theta_P, \theta_G\}$ with discriminator $\theta_2 = \{\theta_{D_1}, \theta_{D_2}\}$
- Reconstruction loss on full frame and center-crop
- Perceptual loss using VGG features

ong Sequences



Our method is able to generate realistic sequences (yellow) beyond the training regime with 16 frames (middle).

Qualitative Results on Human3.6M

