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* Human can anticipate actions.
* Forecasting actions can prevent
harmful actions.

* What? Future
action categories

* How? Future
body positions

\\
Challenges and Goals ]

* Forecasting future action labels and
human pose jointly.
* The two tasks help each other.
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Contributions

A novel seg2seq recurrent model to forecast actions and poses.

Skeleton pose and global motion are combined via image coordinates.

A new evaluation metric, Scaled Changing Distance (SCD), to measure
the continuity of predicted action sequences.

Future Work

Improve the smoothness of predicted pose sequence

Results: Pose Forecasting
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Results: Action Prediction

Forecasting Methods Acco | Acer | Accs | avg.
Two-stream + FC - 22.37 - -
Two-stream + LSTM - 55.60 - -
iDT + LSTM - 65.20 - -

Multi-label LSTM (ours) | 74.95 | 74.74 | 74.56 | 74.77

Multi-task Seq2seq (ours) | 76.36 | 76.12 | 74.34 | 75.21
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* Action prediction accuracies of different lengths, from 0
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* Action prediction accuracy on lkeaDB dataset.
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Results: Joint Learning

Methods Accavg (%) | F1 | Epose (e-2)
RNN-SW - 0.60 -
JCR-RNN - 0.65 -
Zero-velocity 87.72 0.67 4.48
Ours (joint learning) 88.11 0.68 3.84
Ours (action only) 87.94 0.66 -
Ours (pose only) - - 4.29

* Action and pose forecasting evaluation on OAD dataset.



