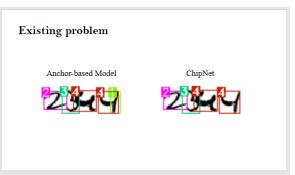

A Fast and Accurate Object Detector for Handwritten Digit String Recognition

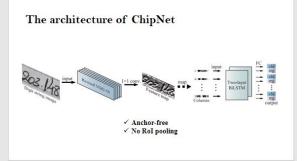
Jun Guo, Wenjing Wei, Yifeng Ma and Cong Peng

School of Data Science & Engineering, East China Normal University, China

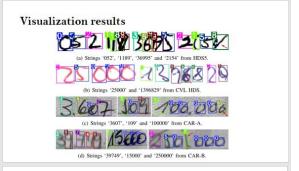
We propose an anchor-free object detector called ChipNet. Different from the typical detectors, it doesn't use region proposals, anchors or regions of interest pooling and can overcome the shortages of anchorbased and dense detectors in HDSR. The experiments are implemented on the synthetic digit strings, the CVL HDS database, and the ORAND-CAR-A & B databases. The high accuracies, which surpass the reported results by a large margin (up to 6.62%), are achieved. Furthermore, it gets 219 FPS speed on 160*32 px resolution images when using a Tesla P100 GPU.

Network design Layer(type) Configurations $\begin{array}{l} {\rm cls:}\ W^i/2\times 11,\ {\rm a:\ softmax} \\ {\rm reg:}\ W^i/2\times 4,\ {\rm a:\ sigmoid} \\ {\rm hidden\ units:}\ W^i/2,\ {\rm size:\ 2048,\ ln} \end{array}$ 1: FC 2: BiLSTM 3: BiLSTM hidden units: $W^i/2$, size: 2048 4: Reshape 5: Convolution 6: Convolution×3 7: Convolution×3 f: 512, k: 3×3 , s: 1×1 , p: same, a: relu f: 512, k: 3×3 , s: 1×1 , p: same, a: relu 8: Convolution×3 9: MaxPooling 10: Convolution×2 11: MaxPooling k: 1×2 , s: 1×2 f: 128, k: 3×3 , s: 1×1 , p: same, a: relu k: 2×2 , s: 2×2 f: 64, k: 3 × 3, s: 1 × 1, p: same, a: relu 12: Convolution×2


 $W^i \times H$ grayscale images


Experiments on benchmarks

Method	CVL HDS	CAR-A	CAR-B	
Tébessa I [24]	59.30	37.05	26.62	
Tébessa II [24]	61.23	39.72	27.72	
Shanghai [24]	48.93	49.50	28.09	
Singapore [24]	50.40	52.30	59.30	
Pernambuco [24]	58.60	78.30	75.43	
Beijing [24]	85.29	80.73	70.13	
Saabni [8]	100	85	.80	
CRNN [9]	26.01	88.01	89.79	
RNN-CTC [10]	27.07	89.75	91.14	
Faster R-CNN*	69.97	74.97	76.22	
YOLOv3-tiny*	65.86	72.51	76.13	
ChipNet	91.91	92.36	92.89	


Ablation study

Model	HDS5	CVL HDS	CAR-A	CAR-B
Model 1	98.12	89.86	90.06	90.85
	298	272	328	325
Model 2	99.16	90.92	91.21	91.97
	245	226	289	291
Model 3	99.67	91.52	91.65	92.03
	185	172	217	221
Model 4	97.56	88.79	90.12	90.56
	216	205	259	262
ChipNet	99.78	91.91	92.36	92.89
	219	201	267	262

Data	Data Length	th Initial samples	Randomly	select					
Data Lenj	Lingua		Training set	Test set					
Rullier	2	13,405	10,000	800		IoU	Accuracy	mAP	FPS 5
	3	12,503	10,000	800	Faster R-CNN* Faster R-CNN* YOLOv3-tiny*				
	4	11,289	10,000	800					
	5	10,928	10,000	800		0.5	94.67	99.18	
	total	48,125	40,000	3,200		0.7	94.36	99.11	
	2	87,968	25,000	500		0.9	91.92	97.72	
	3	87,969	25,000	500		0.9	91.92	91.12	
States	4	87,969	25,000	500		0.5	95.57	99.26	257
	5	87,969	25,000	500		0.7	95.25	99.09	
	total	351,875	100,000	2,000					
	2	50,000	15,000	700		0.9	92.37	97.80	
S _{HNST} 4	3	50,000	15,000	700	ChipNet	0.5	00.70	00.04	219
		50,000	15,000	700		0.5	99.78	99.94	
		50,000	15,000	700		0.7	99.65	99.89	
	total	200,000	60,000	2,800		0.9	98.59	99.62	
HDS5	2	151,373	50,000	2,000		0.7	70.07	77.02	
	3	150,472	50,000	2,000	The results of the three detectors on HDS5				
	4	149,258	50,000	2,000					
	5	148,897	50,000	2,000					
	total	600,000	200,000	8,000					

Conclusions

- ✓ A novel object detector for HDSR
- ✓ An effective encoding method
- ✓ No region proposals, anchors and RoI pooling
- ✓ An accuracy of 99.78% on HDS5
- ✓ A real-time speed