

#### INTRODUCTION

Unsupervised domain adaptation (UDA) aims to transfer knowledge from a labeled source domain to an unlabeled target domain by learning domain-invariant feature representations.

**Partial domain adaptation** (PDA) is a new adaptation task that particularly investigates the scenarios in which the source dataset is large and diverse compared to the target dataset.



Partial domain adaptation

## **PDA Approaches:**

- **Goal:** promote learning from the shared classes between the domains to enhance target domain classification performance.
- Assumption: target domain label space is a subset of the source domain label space.
- Challenge: avoid learning from *outlier classes*, i.e. the source domain classes that do not appear in the target domain.



# **Class Conditional Alignment for Partial Domain Adaptation**

Mohsen Kheirandishfard, Fariba Zohrizadeh, and Farhad Kamangar University of Texas at Arlington

#### CONTRIBUTION

Leveraging the same network architecture as partial adversarial domain adaptation (PADA) [1], we jointly align the marginal and class-conditional distributions in the shared label space by minimaxing a novel multi-class adversarial loss function. Furthermore, we incorporate effective regularization terms to encourage selecting the most relevant subset of source domain classes.

## **PROPOSED METHOD**



Let  $\{(\boldsymbol{x}_s^i, \boldsymbol{y}_s^i)\}_{i=1}^{n_s}$  be the source samples and their labels from  $\mathcal{C}_s$  classes, and  $\{x_t^i\}_{i=1}^{n_t}$  denote the target samples. PADA minimizes the loss function

> $\max_{\tilde{\boldsymbol{\theta}}_{d}} \min_{\boldsymbol{\theta}_{y}, \boldsymbol{\theta}_{f}} \quad \frac{1}{n_{s}} \sum_{\boldsymbol{x}^{i} \in \boldsymbol{\mathcal{V}}} \gamma_{c_{i}} L_{\boldsymbol{y}}(G_{f}(\boldsymbol{x}^{i})), \boldsymbol{y}^{i}) + \lambda \tilde{\mathcal{L}}_{d} (\boldsymbol{\theta}_{f}, \tilde{\boldsymbol{\theta}}_{d})$ +  $\mathcal{L}_{c}(\boldsymbol{\theta}_{f},\boldsymbol{\theta}_{y}) + \mu \mathcal{L}_{\infty}(\boldsymbol{\theta}_{f},\boldsymbol{\theta}_{y}) + \zeta \mathcal{L}_{e}(\boldsymbol{\theta}_{f},\boldsymbol{\theta}_{y})$

Weighted centroid alignment regularization  $\mathcal{L}_c$  mitigates the adverse effect of falsely-pseudo-labeled target samples by aligning labeled source centroids and pseudo-labeled target centroids in the feature space.

**Row-sparsity regularization**  $\mathcal{L}_{\infty}$  promotes the selection of a small subset of classes that are in common between the source and target domains.

**Minimum entropy regularization**  $\mathcal{L}_e$  utilizes the output of  $G_y$  to downweight the relative importance of irrelevant samples from both domains.

#### EXPERIMENTS

Experiments on Office-31 object dataset consists of 4,652 images from 31 classes across three domains: *Amazon* (**A**), *Webcam* (**W**), and *DSLR* (**D**).



Amazon  $(\mathbf{A})$ 

| Method           | $\mathbf{A} \to \mathbf{W}$ | $\mathbf{D}\to \mathbf{W}$ | $\mathbf{W} \to \mathbf{D}$ | $\mathbf{A} \to \mathbf{D}$ | $\mathbf{D}  ightarrow \mathbf{A}$ | $\mathbf{W} \to \mathbf{A}$ | Avg   |
|------------------|-----------------------------|----------------------------|-----------------------------|-----------------------------|------------------------------------|-----------------------------|-------|
| ResNet           | 75.59                       | 96.27                      | 98.09                       | 83.44                       | 83.92                              | 84.97                       | 87.05 |
| DANN             | 73.56                       | 96.27                      | 98.73                       | 81.53                       | 82.78                              | 86.12                       | 86.50 |
| ADDA             | 75.67                       | 95.38                      | 99.85                       | 83.41                       | 83.62                              | 84.25                       | 87.03 |
| RTN              | 78.98                       | 93.22                      | 85.35                       | 77.07                       | 89.25                              | 89.46                       | 85.56 |
| IWAN             | 89.15                       | 99.32                      | 99.36                       | 90.45                       | 95.62                              | 94.26                       | 94.69 |
| SAN              | 93.90                       | 99.32                      | 99.36                       | 94.27                       | 94.15                              | 88.73                       | 94.96 |
| PADA             | 86.54                       | 99.32                      | 100.0                       | 82.17                       | 92.69                              | 95.41                       | 92.69 |
| ETN              | 94.52                       | 100.0                      | 100.0                       | 95.03                       | 96.21                              | 94.64                       | 96.73 |
| $CCPDA_{\infty}$ | 95.12                       | 99.32                      | 100.0                       | 93.21                       | 96.03                              | 95.19                       | 96.48 |
| $CCPDA_e$        | 97.45                       | 96.64                      | 100.0                       | 96.47                       | 94.92                              | 93.86                       | 96.56 |
| $CCPDA_{d,c}$    | 93.42                       | 97.62                      | 100.0                       | 90.43                       | 93.45                              | 95.53                       | 95.07 |
| CCPDA            | 99.66                       | 100.0                      | 100.0                       | 97.45                       | 95.72                              | 95.71                       | 98.09 |

Please refer to the paper for more experimental results.

## CONCLUSION

- of our approach for different PDA tasks.

#### REFERENCES

[1] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang. Partial adversarial domain adaptation. In ECCV, 2018.





Digital camera  $(\mathbf{D})$ 



Webcam (W)

Table 1: Accuracy of PDA tasks on Office-31 (ResNet-50).

• Our approach adopts a multi-class adversarial loss function to jointly align the marginal and class-conditional distributions across the shared classes between the source and target domains.

• The regularization terms reduce the effects of outlier classes and can be directly incorporated into many adversarial architectures.

• Experiments on a benchmark dataset demonstrate the high potential