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Task

Challenges

* Depth completion
To estimate a dense depth map from

o - 1. Deali ith
sparse depth points in combination cd |.ng wit .
. . . . multimodality data
with an aligned high-resolution .
. introduces extra
camera image. ;
computations.
" 2. Capturing

diverse structures
requires large models.

* To have a low computational complexity

(2) diverse structures

Fine structures in the distant
areas with less samples

(1) multimodality data

zxu‘pimeumuum Varlance

Large structures in the
near areas with more
supporting data

Cascaded Networks with Multiscale Inputs

Grouped Fusion

* 2 cascaded hourglass networks are employed as the backbone.
* The cascaded networks receive input maps at different resolutions.

* Each subnetwork is specialized for certain structures and has a
lightweight architecture.
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== grouped convs [CTdeconvs [Jstandard convs + residual connection

The sparse depth and the gray
image are fed into convolutional
layers with 2 filter groups.

Low computational complexity

High degree of parallelism

Ablation Study

* Cascaded networks resu
& low runtime.

* Grouped fusion saves inference
time without losing accuracy

* The influence of the
number of hourglasses.
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Results

* Comparison with state-of-the-art methods

on NVIDIA Jetson AGX Xavier. * Example results
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* The proposed model runs at more than 39 frames per second (FPS).
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