

- time without losing accuracy MAE RMSE Params MACs FPS 271.741006.34 187.91K 6.29 261.63early late cat 274.51980.66 104.96K5.05203.79late add 275.15 $280.45 \mathrm{K}$ 971.448.63 189.24early (H) 204.69 1019.28 1.76M12.77100.42 late cat (H) 285.93982.051.18M9.59182.30late add (H) 281.03981.472.93M19.08160.85group (H) 283.581001.631.18M9.59 210.88this work 273.35980.61140.96K5.06270.43
- & low runtime.

	MAE	RMSE	Params	MACs	FPS
holistic-32	298.40	1024.49	$106.78 \mathrm{K}$	5.19	332.49
holistic-256	283.58	1001.63	1.18M	9.59	210.88
holistic-512	263.54	967.41	4.72M	38.03	95.58
${\rm holistic}\text{-}512\text{-}\mathrm{dw}$	280.33	1007.64	$2.65 \mathrm{M}$	19.66	104.86
this work	273.35	980.61	$140.96 \mathrm{K}$	5.06	270.43

hourglass

950

Results

 Comparison with state-of-the-art methods on NVIDIA Jetson AGX Xavier.

[1] F. Ma et al. Self-supervised sparse-to-dense: Self-supervised depth completion from lidar and monocular camera. In ICRA, 2019

[2] A. Eldesokey, M. Felsberg, and F. S. Khan, Confidence propagation through cnns for guided sparse depth regression, TPAMI, 2019.

- The proposed model runs at more than 39 frames per second (FPS).
 - Example results

[3] J. Qiu et al. Deeplidar: Deep surface normal guided depth prediction for outdoor scene from sparse lidar data and single color image. In CVPR, 2019.

[4] W. V. Gansbeke et al. Sparse and noisy lidar completion with RGB guidance and uncertainty. In MVA, 2019.