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Abstract

Non-negative matrix factorization (NMF) is an important method in learning latent data representation. The local geometrical structure can make the learned
representation more effectively and significantly improve the performance of NMF. However, most of existing graph-based learning methods are determined by a
predefined similarity graph which may be not optimal for specific tasks. To solve the above problem, we propose the Double Manifolds Regularized NMF (DMR-NMF)
model which jointly learns an adaptive affinity matrix with the non-negative matrix factorization. The learned affinity matrix can guide the NMF to fit the clustering
task. Moreover, we develop the iterative updating optimization schemes for DMR-NMF, and provide the strict convergence proof of our optimization strategy. Empirical
experiments on four different real-world data sets demonstrate the state-of-the-art performance of DMR-NMF in comparison with the other related algorithms.

Contribution Double manifolds regularized non-negative matrix factorization

Low rank representation(LRR) [3] aims to seek low-rank affinity graph
which can effectively reveal the global structures of data. And due to the
complex data distribution, the single manifold structures (such as only
global or only local) may be not sufficient to describe the underlying true
structure. Thus, double manifolds regularized non-negative matrix
factorization (DMR-NMF) minimizes the following objective function with
the non-negative constraints U > 0 and V > 0:

min||X — UV[[g + X[ Z]l + vV — VZ|[g + Btr(VLVT),
st.U>0,V > 0.

» Proposing a novel double manifolds regularized non-negative matrix
factorization (DMR-NMF) algorithm for data representation and clustering;

» DMR-NMF utilizes a basic subspace clustering on the latent representation to
obtain the low rank self-expressiveness affinity matrix. The DMR-NMF model
jointly learns an adaptive affinity matrix with the non-negative matrix
factorization, therefore, the ideal data structure under our assumption can be
well uncovered, and the learned affinity matrix may better guide the matrix
factorization to learn efficient data representation.; and

(3)

» DMR-NMF is formulated as an optimization problem with a well-defined
objective function. An efficient iterative method is designed to solve the

DMR-NMF problem. Both the theoretical analysis and empirical performance
are provided to demonstrate the convergence of the optimization strategy;

» [ he experimental results on several real world data sets demonstrate the
excellent performance of DMR-NMF.

Related Works

The non-negative matrix factorization (NMF) aims to find two
non-negative matrices whose product provides a better approximation for
the original feature matrix. Given a data matrix X € RY9%", the objective
function of the stand NMF model is defined as

in || X — UV|? 1
oMhin|[X — UV, (1)

where U = [uy] € R¥*"(r < d) is a basis matrix and V = [v,;] € R™*"
s the latent feature representation.

Graph Laplacian-based embedding effectively characterizes the similarity
between data and has been widely used to preserve the local manifold

structure. Given the similarity matrix W, the graph regularized NMF
(GNMF) model is formulated as below:

: . 2 T
o min X = UV + Atr(VLVY), (2)

where L = D — W is the graph Laplacian matrix, in which D is a diagonal
matrix and Dj; = > W;.
=1

Motivation

» [ he similarity matrix W is artificially defined according to raw feature in
advance, which may be not accurate since the existence of noises. Thus, W
in GNMF is not an optimal graph for characterizing the complex intrinsic
structure of data.

» And, the global structure of data is not explored for GNMF. Those reduce the
flexibility of NMF and heavily affect the performance of the algorithm.
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Main Experiments

Databases

K

ACC
Kmeans NMF [1] GNMF [2] SDNMF [4] DMR-NMF

10
20
30
40

75.80
63.70
59.33
57.50

75.80
66.70
61.40
57.30

77.60
63.20
61.00
58.95

(77.70
63.50
61.58
60.90

80.00
69.30
63.17
59.75

5
10
15
20

76.20
66.70
61.47
54.65

79.80
70.00
60.40
56.95

89.40
80.00
63.87
66.75

89.00
79.10
69.60
64.60

92.40
83.00
72.27
68.55

.
9
11
13
15

76.36
68.43
60.99
58.18
55.88

4.29
66.46
61.16
57.90
54.52

(8.44
(1.52
63.14
58.60
56.36

76.10
71.11
61.36
57.48
57.58

82.86
73.94
65.95
60.35
58.42

COIL20

4
8
12

20

91.32
85.14
(8.45
68.56

90.90
85.66
(3.52
66.90

95.35
91.70
85.32
76.25

95.42
91.15
86.92
(8.54

98.71
92.88
88.23
79.55

Table 1: Clustering results of different methods by the measurement of ACC on four databases.

Databases

K

NMI
Kmeans NMF [1] GNMF [2] SDNMF [4] DMR-NMF

10
20
30
40

(3.78
72.34
70.62
71.50

74.36
(2.58
71.32
71.62

74.69
74.85
(2.73
(2.44

(2.34
(5.54
71.06
(2.40

78.62
76.08
73.19
73.62

5
10
15
20

63.42
67.37
66.70
66.66

70.22
69.09
65.27
67.20

84.77
(8.75
(3.78
72.61

83.54
(8.26
4.58
71.79

87.03
80.90
76.14
74.90

;
9
11
13
15

58.62
54.97
49.37
49.12
49.65

60.54
54.02
50.74
48.74
438.34

64.74
60.70
54.22
49.56
51.86

64.50
55.60
49.83
51.04
51.73

68.47
61.83
55.31
52.31
52.04

COIL20

4
8
12

20

84.07
79.73
76.63
71.55

80.94
(8.75
72.09
67.42

92.01
88.84
81.28
80.69

92.01
85.70
84.73
81.41

95.32
90.09
85.28
81.43

Table 2: Clustering results of different methods by the measurement of NMI on four databases.
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