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Contributation

I propose the Low-Rank Representation (LRR) model with Matrix
Factorization on Product Grassmann manifolds (PG-MFLRR), which is a
multi-view manifold clustering method;

I PG-MFLRR captures the true low rank structure of data representation.
And, factorization strategy provides nearly unbiased relaxations of the rank
function. They can help us to achieve the higher clustering accuracy and
save the time consumption in order to have a wide range of applications;

I The existence of optimal solution for the non-convex optimization problem
is proved. Furthermore, an effective optimization algorithm is developed;
and

I Extensive experiments are conducted on four multi-source video datasets,
which demonstrate the effectiveness and competitiveness of the proposed
method.

BackGround: Product Grassmann Manifolds

Grassmann manifolds [1], denoted by G(p, d), is the space of all
p-dimensional linear subspaces of Rd for 0 ≤ p ≤ d . Grassmann
manifolds can be embedded into the space of symmetric matrices Sym(d)
as

Π : G(p, d)→ Sym(d), Π(X ) = XXT . (1)

hence it is reasonable to replace the distance on Grassmann manifolds with
the following distance defined on the symmetric matrix space,

d 2
G(X ,Y ) =

1

2
‖Π(X )− Π(Y )‖2

F . (2)

Given V Grassmann manifolds with dimensions p1, · · · , pV respectively,
the Product Grassmann manifolds (PGM) (denoted by PGd :p1,··· ,pV )
is defined as G(p1, d)× · · · × G(pV , d). Then, a point embedded in
PGM is a set of Grassmann points, denoted by [X ] = {X 1, · · · ,XV}
such that X v ∈ G(pv, d), v = 1, · · · ,V . A valid distance on PGM can
be induced from the individual distance (2) on each Grassmann manifold as
follows,

d 2
PG([X ], [Y ]) =

V∑
v=1

d 2
G(X v,Y v). (3)

Related Works

Spectral Clustering (SC) is used as the framework for subspace clustering.
The main challenge by using SC is to define a ”good” affinity matrix (or
graph) Z ∈ Rn×n. To explore the global structure, LRR enforce the low
rank constraint on the self-expression coefficients matrix of data. Given
Y = [y1, y2, · · · , yN] ∈ Rd×N denotes a set of samples collected from
multiple independent subspaces, LRR [3] model is formulated as

min
Z,E

rank(Z) + λ‖E‖2
F ,

s.t. Y = YZ + E,
(4)

As a common precessing, the low rank term is replaced by nuclear norm as
the effective approximations,

min
Z,E
‖Z‖∗ + λ‖E‖2

F ,

s.t. Y = YZ + E.
(5)

Once obtaining the coefficient matrix Z, spectral clustering algorithm can
be performed to receive the final results.
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LRR with Matrix Factorization on Product Grassmann Manifolds

To handle multi-view data from multi-dimensional subspace, we consider
the generalization of model (5) onto Product Grassmann manifolds.
X = {[X1], [X2], · · · , [Xn]} be a set of given PGM samples, where
[Xi ] = {X 1

i , · · · ,XV
i } ∈ PGd :p1,··· ,pV with the basic matrix

X v
i ∈ G(pv,m). Mathematically, Low Rank Representation on Product

Grassmann Manifolds (PG-LRR) [2] can be formulated as:

min
Z

n∑
i=1

‖[Xi ]	 (
n⊎

j=1

zij � [Xj])‖PG + λ‖Z‖∗, (6)

where abstract symbols 	,
⊎n

j=1 and � denote the “linear” operations to
be defined on manifolds, i.e., addition, subtraction and scalar multiplication.

‖[Xi ]	 (
n⊎

j=1

zij � [Xj])‖PG with operator 	 representing the product

manifold distance between [Xi ] and its reconstruction
n⊎

j=1

zij � [Xj].

Motivated by the matrix factorization, we assume that the representation
matrix Z can be decomposed into tri-matrix multiplication, this is
Z = UMVT , where U ∈ Rn×k, M ∈ Rk×k and V ∈ Rn×k, k is the given
upper bound of the true rank. Two reasonable constraints UTU = Ik and
VTV = Ik are introduced to ensure the stability of the solutions. Thus,
‖Z‖∗ = ‖UMVT‖∗ = ‖M‖∗. The LRR with Matrix Factorization on
Product Grassmann Manifolds (PG-MFLRR) is formulated as:

min
U,M,V

n∑
i=1

‖[Xi ]	 (
n⊎

j=1

zij � [Xj])‖PG + λ‖M‖∗,

s.t. Z = UMVT ,UTU = VTV = Ik,

(7)

where Z = {zij}ni ,j=1 ∈ Rn×n is the coefficient representation matrix.

Main Experiments

Method Metrics ACT42 NUCLA IXMAS DTHC

SCGSMbest

ACC 0.4405 0.2823 0.4189 0.7189
NMI 0.5065 0.2115 0.4507 0.5499

F-score 0.1365 0.2827 0.0922 0.6531

G-LRRbest

ACC 0.4541 0.2904 0.4196 0.7802
NMI 0.5421 0.2202 0.4669 0.6870

F-score 0.1296 0.2976 0.4187 0.7059

SwMC

ACC 0.1139 0.2823 0.4071 0.5275
NMI 0.0593 0.2481 0.5290 0.2649

F-score 0.1281 0.2990 0.4570 0.5030

MLAN

ACC 0.1397 0.2703 0.2684 0.5275
NMI 0.0821 0.2409 0.3546 0.2649

F-score 0.1454 0.2815 0.3269 0.5030

MVGL

ACC 0.1269 0.2775 0.4041 0.7802
NMI 0.0492 0.2024 0.4831 0.6870

F-score 0.1298 0.2932 0.4289 0.7913

MCGC

ACC 0.1429 0.2679 0.4071 0.9396
NMI 0.0649 0.1972 0.4448 0.8436

F-score 0.1445 0.2710 0.4295 0.9393

SM2SC

ACC 0.1463 0.1100 0.3835 0.7637
NMI 0.0628 0.0042 0.4095 0.5275

F-score 0.0782 0.1798 0.2808 0.6399

LCRSR

ACC 0.3766 0.2700 0.3890 0.8381
NMI 0.2397 0.2078 0.3740 0.7237

F-score 0.2217 0.0641 0.3889 0.7734

PG-LRR

ACC 0.4957 0.2969 0.4240 0.8022
NMI 0.6250 0.3525 0.4773 0.6075

F-score 0.5102 0.3017 0.4268 0.8014

PG-MFLRR

ACC 0.5098 0.3560 0.4945 1.0000
NMI 0.6421 0.3681 0.5014 1.0000

F-score 0.5317 0.3978 0.4912 1.0000
Table 1:Clustering results on different multi-view video databases.
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