

EFFICIENT ONLINE SUBCLASS KNOWLEDGE DISTILLATION FOR IMAGE CLASSIFICATION

Maria Tzelepi, Nikolaos Passalis and Anastasios Tefas

Department of Informatics, Aristotle University of Thessaloniki (Greece)

email: mtzelepi@csd.auth.gr, passalis@csd.auth.gr, tefas@csd.auth.gr

Introduction

- Knowledge Distillation (KD) has been established as a highly promising approach for training compact and faster models by transferring knowledge from powerful models
- However, KD in its conventional version constitutes an enduring, computationally and memory demanding process
- Thus, many online KD approaches have recently been proposed
- Online KD describes the process where the teacher and student networks are trained simultaneously, without requiring a separate stage for pre-training the teacher network
- Current online KD works propose to train multiple models mutually from each other, or to create ensembles of multiple identical branches of a target network in order to build a strong teacher and distill the knowledge to the target network

Motivation

- In conventional KD methods it is manifested that it is advantageous for each sample to **maintain the similarities with the other classes**, instead of merely training with the hard labels
- In this work, we considered that inside each class there is also a set of **sub-classes** that **share semantic similarities** (e.g., blue cars, inflatable boats, etc.)
- The sub-classes inside each class are unknown and thus, we proposed to **estimate** them using the **neighborhood** of each sample
- We assume that the **nearest neighbors** of each sample inside a class belong to the **same sub-class**
- The model is trained synchronously both with the conventional supervised loss (hard labels) and the soft labels so as to maintain these sub-class similarities

Proposed method

- We proposed Online Subclass Knowledge Distillation (OSKD) method, that distills additional knowledge online from the model itself throughout the network's training
- We introduced an additional **distillation objective** which encourages the data representations to come closer to the nearest representations of the same class and concurrently to move further away from the nearest representations of the other classes
- Considering an input vector \mathbf{y}_i , a neural network $\phi(\cdot, W)$ with a set of parameters W, and the output vector of \mathbf{y}_i given the network $\phi(\mathbf{y}_i, W)$ the additional distillation objective is formulated as follows:

$$\min_{\mathcal{W}} \mathcal{J}_1 = \min_{\mathcal{W}} \sum_{\mathbf{y}_i, \mathbf{y}_j \in \mathcal{R}^i} \|\phi(\mathbf{y}_i; \mathcal{W}) - \phi(\mathbf{y}_j; \mathcal{W})\|_2^2 \quad \max_{\mathcal{W}} \mathcal{J}_2 = \max_{\mathcal{W}} \sum_{\mathbf{y}_i, \mathbf{y}_l \in \mathcal{V}^i} \|\phi(\mathbf{y}_i; \mathcal{W}) - \phi(\mathbf{y}_l; \mathcal{W})\|_2^2.$$

• The above equations can also be formulated as follows:

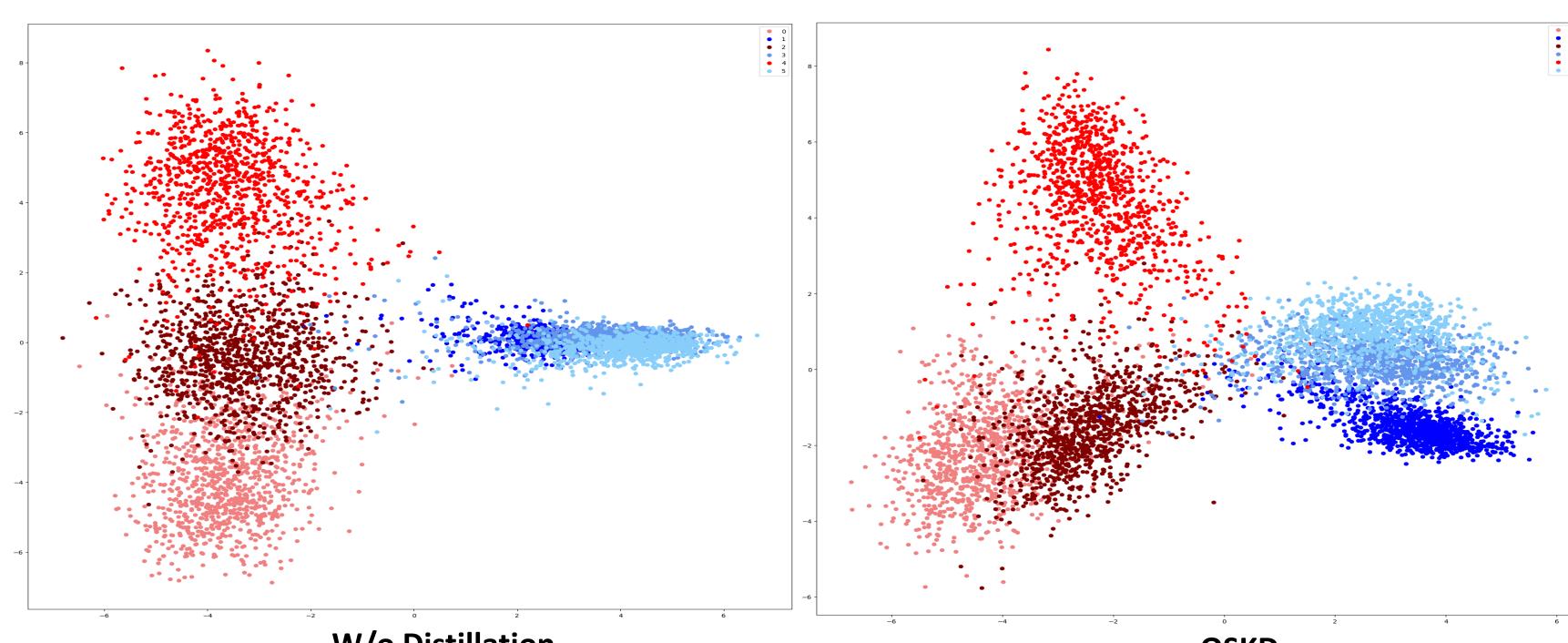
$$\min_{\mathcal{W}} \mathcal{J}_1 = \min_{\mathcal{W}} \sum_{\mathbf{y}_i \in \mathcal{R}^i} \|\phi(\mathbf{y}_i; \mathcal{W}) - \boldsymbol{\mu}_r^i)\|_{2}^2, \quad \max_{\mathcal{W}} \mathcal{J}_2 = \max_{\mathcal{W}} \sum_{\mathbf{y}_i \in \mathcal{V}^i} \|\phi(\mathbf{y}_i; \mathcal{W}) - \boldsymbol{\mu}_v^i)\|_{2}^2$$

where μ_r and μ_u correspond to the mean vectors of the nearest representations of the same class and the nearest representations of the other classes, respectively.

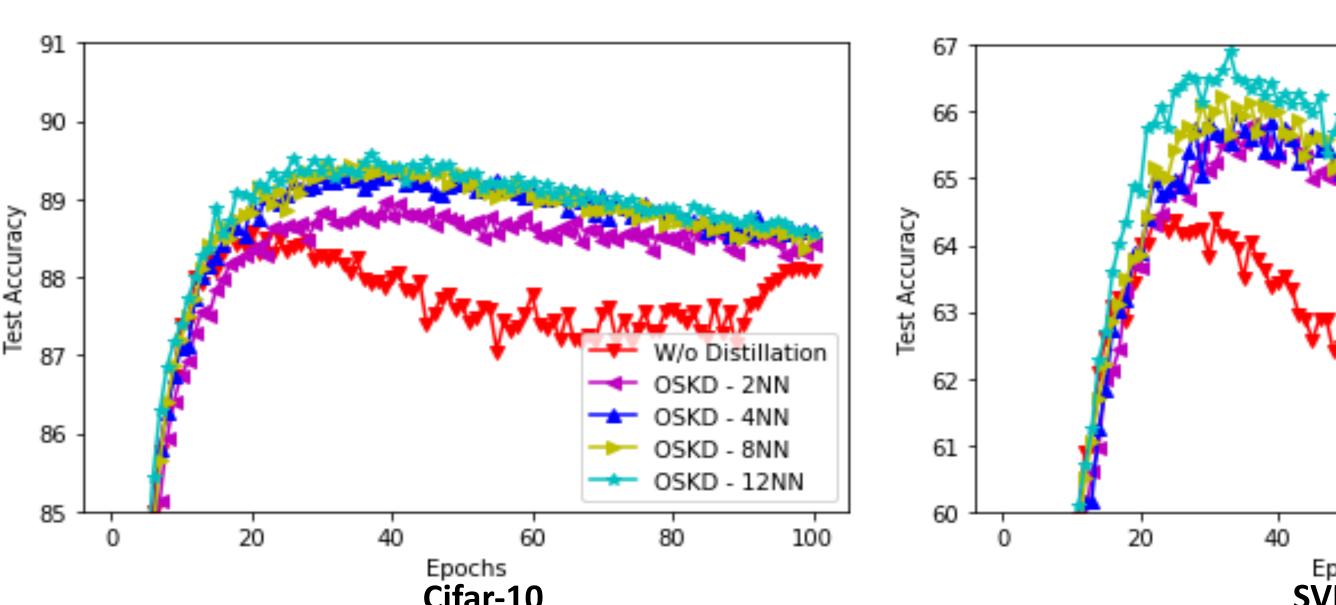
- Thus the overall distillation loss is formulated as: $J_{oskd} = J_1 + (1-J_2)$
- Therefore, in the proposed distillation training process we seek for the parameters W* that minimize the overall loss of cross entropy, Jce, and distillation, Joskd:

$$\mathcal{W}^* = \underset{\mathcal{W}}{\operatorname{arg\,min}} \sum_{i=1}^{N} [J_{ce}(c_i, \phi(y_i; \mathcal{W})) + \lambda J_{oskd}(\mu_r^i, \mu_v^i, \phi(y_i; \mathcal{W}))]$$

Experimental Results



W/o Distillation
OSKD
MNIST (odd vs even digits with 3 subclasses per class): LDA Visualization



Test accuracy for different numbers of nearest neighbors inside each class

Test Accuracy for different numbers of nearest neighbors on Cifar-10 and SVHN-10 datasets

Method	Cifar-10	SVHN-10
W/o Distillation	$64.83\% \pm 0.57\%$	$88.82\% \pm 0.21\%$
OSKD - 2NN	$66.16\% \pm 0.76\%$	$89.00\% \pm 0.14\%$
OSKD - 4NN	$66.39\% \pm 0.77\%$	$89.52\% \pm 0.23\%$
OSKD - 8NN	$66.59\% \pm 0.78\%$	$89.61\% \pm 0.29\%$
OSKD - 12NN	$67.36\% \pm 0.82\%$	$89.67\% \pm 0.28\%$

Comparisons against existing online distillation methods using WRN 16-2

Method	Test Accuracy
WRN 16-2	$93.55\% \pm 0.11\%$
ONE	$93.76\% \pm 0.16\%$
FFL-S	$93.79\% \pm 0.12\%$
ONE-E	$93.84\% \pm 0.20\%$
FFL	$93.86\% \pm 0.11\%$
OSKD	$93.96\% \pm 0.13\%$

Acknowledgments

This research is co-financed by Greece and the European Union (European Social Fund - ESF) through the Operational Programme "Human Resources Development, Education and Lifelong Learning 2014-2020" in the context of the project "Lightweight Deep Learning Models for Signal and Information Analysis" (MIS 5047925).