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* A fundamental limitation of deep convolutional neural network
(DCNN): Due to the strong dependency on training data, DCNN is
fragile to domain shifts.

v Domain shift: Statistical difference of data distributions
between two domains.
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» Unsupervised domain adaptation (UDA)
v' Feature-level and Pixel-level adaptation approaches.
v Limitation: Discriminative power in target domain is not
guaranteed and not robust to large domain shift.
« Semi-supervised domain adaptation (SSDA)
v" In comparison with UDA, a few labeled images are additionally
given for training.
* Previous SSDA method: Minimax entropy (MME [14])
v Update to increase entropy w.r.t classifier.
v Update to decrease entropy w.r.t feature extractor.
 Limitation of previous SSDA method
v" Solely adopt labeled target images for embedding ordinary
supervised loss, overlooking the potential usefulness of the few
yet informative data.
v Our motivation: We propose to exploit the labeled target images
more actively by treating them as ‘golden’ samples for SSDA.

Proposed Method (Continued)

« Step #2: Selective pseudo labeling
v Applied independently for each image category.
v" For the j-th unlabeled image, a pairwise distance is calculated.
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v Sort the unlabeled images based on d; and determine n;, samples
as pseudo labels.
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v The pipeline of the selective pseudo labeling scheme.
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« Step #3: Label noise-robust learning via progressive self-training
v The selected pseudo labels are still not completely reliable (i.e.,
noisy).
v" Inspired by [17], we alternately update the network and the noisy
labels set.
 Final objective function
v We conduct SSDA by combining the baseline method and our
proposed scheme.

Proposed Method

» Overall framework of the proposed SSDA scheme

Stage 1 (Ordmary Pseudo Labeling)
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* Our method consists of the following three steps

v' Step #1: Training a baseline network for generating pseudo

labels.

v’ Step #2: Selective pseudo labeling.

v' Step #3: Label noise-robust training via progressive self-training.
» Step #1: Pseudo labeling via a baseline method

v MME [14] is adopted as the baseline method.

v Assign pseudo labels to unlabeled images.

Experimental Results & Analysis

» Experimental setups

v' Datasets: LSDAC [3], Office-Home [18], and Office [19].

v' Baseline network architectures: AlexNet [27], VGG-16 [28],

and ResNet-34 [29].

v Implementation: PyTorch 1.1.0 & NVIDIA Titan-X.
* DA methods In comparison

v' S+T, DANN [4], ADR [20], CDAN [5], ENT [21], MME [14].
» Comparative evaluation results

v Results on the LSDAC dataset (ResNet-34)

S+T DANN [ ADR | CDAN ENT MME Ours
1-shot 56.9 58.4 57.6 62.5 62.6 06.4 69.0
3-shot 00.0 00.7 00.4 06.5 6/.6 68.9 71.0
v" Results on the Office-Home dataset (VGG-16)
S+T DANN | ADR | CDAN ENT MME Ours
1-shot 57.4 60.0 57.4 55.8 51.6 62.7 63.9
3-shot 62.9 63.9 63.0 61.8 64.8 6/.6 68.6
v Results on the Office dataset (VGG-16)
S+T DANN [ ADR | CDAN ENT MME ours
1-shot 68.7 69.8 09.4 65.9 70.6 /3.4 /6.4
3-shot 73.3 75.0 73.7 2.9 75.3 /7.0 78.1

References

3]
%

op. 5018-5027.

3] X. Peng, Q. Bal, X. Xia, Z. Huang, K. Saenko, and B. Wang, “Moment matching for multi-source domain adaptation,” in Proc. IEEE International Conference on Computer Vision (ICCV), 2019, pp. 1406-1415.

4] Y. Ganin and V. Lempitsky, “Unsupervised domain adaptation by backpropagation,” in Proc. International Conference on Machine Learning (ICML), 2015.

5] M. Long, Z. Cao, J. Wang, and M. Jordan, “Conditional adversarial domain adaptation,” in Proc. Neural Information Processing Systems (NeurlPS), 2018.

14] K. Saito, D. Kim, S. Sclaroff, T. Darrell, and K. Saenko, “Semisupervised domain adaptation via minimax entropy,” in Proc. IEEE Conference on International Conference on Computer Vision (ICCV), 2019.

17] D. Tanaka, D. Ikami, T. Yamasaki, and K. Aizawa, “Joint optimization framework for learning with noisy labels,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 5552-5560.
18] H. Venkateswara, J. Eusebio, S. Chakraborty, and S. Panchanathan, “Deep hashing network for unsupervised domain adaptation,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017,

19] K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in Proc. European Conference on Computer Vision (ECCV). Springer, 2010, pp. 213-226.
20] K. Saito, Y. Ushiku, T. Harada, and K. Saenko, “Adversarial dropout regularization,” arXiv preprint arXiv:1711.01575, 2017.

21] Y. Grandvalet and Y. Bengio, “Semi-supervised learning by entropy minimization,” in Proc. Advances in neural information processing systems (NeurlPS), 2005, pp. 529-536.




