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• A fundamental limitation of deep convolutional neural network 

(DCNN): Due to the strong dependency on training data, DCNN is 

fragile to domain shifts.

✓ Domain shift: Statistical difference of data distributions 

between two domains.

• Unsupervised domain adaptation (UDA)

✓ Feature-level and Pixel-level adaptation approaches.

✓ Limitation: Discriminative power in target domain is not 

guaranteed and not robust to large domain shift.

• Semi-supervised domain adaptation (SSDA)

✓ In comparison with UDA, a few labeled images are additionally 

given for training.

• Previous SSDA method: Minimax entropy (MME [14])

✓ Update to increase entropy w.r.t classifier.

✓ Update to decrease entropy w.r.t feature extractor.

• Limitation of previous SSDA method

✓ Solely adopt labeled target images for embedding ordinary 

supervised loss, overlooking the potential usefulness of the few 

yet informative data.

✓ Our motivation: We propose to exploit the labeled target images 

more actively by treating them as ‘golden’ samples for SSDA.

• Overall framework of the proposed SSDA scheme

• Our method consists of the following three steps

✓ Step #1: Training a baseline network for generating pseudo 

labels.

✓ Step #2: Selective pseudo labeling.

✓ Step #3: Label noise-robust training via progressive self-training.

• Step #1: Pseudo labeling via a baseline method

✓ MME [14] is adopted as the baseline method.

✓ Assign pseudo labels to unlabeled images.

• Step #2: Selective pseudo labeling

✓ Applied independently for each image category.

✓ For the j-th unlabeled image, a pairwise distance is calculated.

✓ Sort the unlabeled images based on 𝑑𝑗 and determine 𝑛𝑢
′ samples 

as pseudo labels.

✓ The pipeline of the selective pseudo labeling scheme.

• Step #3: Label noise-robust learning via progressive self-training

✓ The selected pseudo labels are still not completely reliable (i.e., 

noisy).

✓ Inspired by [17], we alternately update the network and the noisy 

labels set.

• Final objective function

✓ We conduct SSDA by combining the baseline method and our 

proposed scheme.

• Experimental setups

✓ Datasets: LSDAC [3], Office-Home [18], and Office [19].

✓ Baseline network architectures: AlexNet [27], VGG-16 [28] , 

and ResNet-34 [29].

✓ Implementation: PyTorch 1.1.0 & NVIDIA Titan-X.

• DA methods in comparison

✓ S+T, DANN [4], ADR [20], CDAN [5], ENT [21], MME [14].

• Comparative evaluation results

✓ Results on the LSDAC dataset (ResNet-34)

✓ Results on the Office-Home dataset (VGG-16)

✓ Results on the Office dataset (VGG-16)

S+T DANN ADR CDAN ENT MME Ours

1-shot 56.9 58.4 57.6 62.5 62.6 66.4 69.0

3-shot 60.0 60.7 60.4 66.5 67.6 68.9 71.0

S+T DANN ADR CDAN ENT MME Ours

1-shot 57.4 60.0 57.4 55.8 51.6 62.7 63.9

3-shot 62.9 63.9 63.0 61.8 64.8 67.6 68.6

S+T DANN ADR CDAN ENT MME Ours

1-shot 68.7 69.8 69.4 65.9 70.6 73.4 76.4

3-shot 73.3 75.0 73.7 72.9 75.3 77.0 78.1
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