

1. Compositing Equation

2. Foreground Estimation

- Goal: Obtain foreground image F from image I and alpha matte α
- Problem: Underconstrained
- 6 unknowns in F_i and B_i , but only 3 equations (one per color channel)

3. Motivation

Naive: Color bleeding

Solution: Estimate foreground F

• Naively composing image I onto white background leads to color bleeding • $\alpha I = \alpha (\alpha F + (1 - \alpha)B) = \alpha^2 F + \alpha (1 - \alpha)B \neq \alpha F$

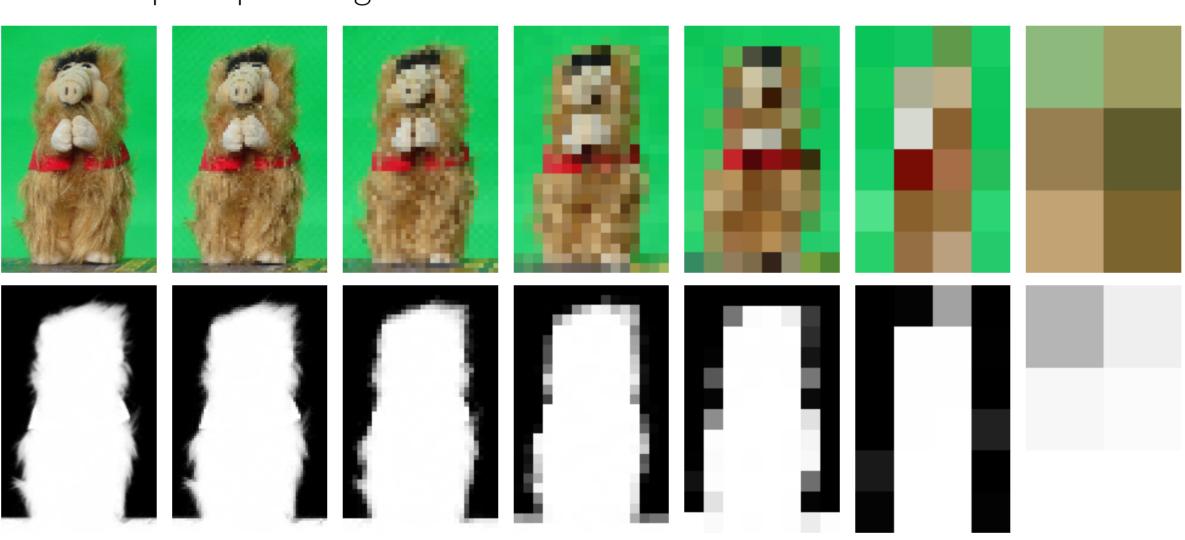
VS

Fast Multi-Level Foreground Estimation

Thomas Germer, Tobias Uelwer, Stefan Conrad, Stefan Harmeling

Heinrich Heine University Düsseldorf, Germany

4. Our Method


• Reformulate global cost function by [LLW07] as local cost function over neighbors $j \in N_i$

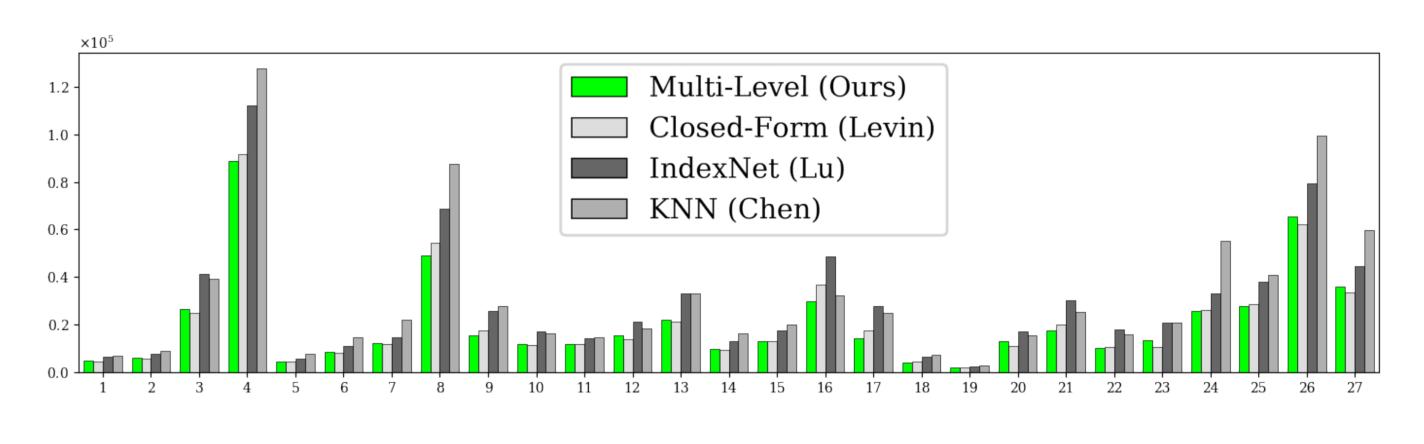
Constrain composite color

$$\operatorname{cost}(F_{i}^{c}, B_{i}^{c}) = \overbrace{(\alpha_{i}F_{i}^{c} + (1 - \alpha_{i})B_{i}^{c} - I_{i}^{c})^{2}}^{\alpha_{i}} + \sum_{j \in N_{i}} (\epsilon_{r} + \omega |\alpha_{i} - \alpha_{j}|) \left[(F_{i}^{c} - F_{j}^{c})^{2} + (B_{i}^{c} - B_{j}^{c})^{2} \right]$$

Penalize color gradients in regions of large alpha gradients control regularization with parameter ϵ_r weight gradient term with parameter ω

- **Problem:** Iterative approach infeasible, solution only propagates slowly across image
- Solution: Multi-level approach
- 1. Downsample input image and α until small

2. Solve at lowest resolution, use upsampled result as initialization for larger size


5. Average Runtime per Image

Setup	Method	Time [s]	Std. dev. [s]
HPC	Multi-Level (Ours)	2.04	0.296
	Closed-Form [LLW07]	26.3	5.48
	IndexNet [LDSX19]	74.5	10.1
	KNN [CLT13]	38.2	6.47
Mac	Multi-Level (Ours)	1.48	0.251
	Closed-form [LLW07]	27.9	7.93
	IndexNet [LDSX19]	-	-
	KNN [CLT13]	148.0	56.2

 αF

Method

Multi-Level (Ours Closed-Form [LL] IndexNet [LDSX2 KNN [CLT13]

8. Open Source Implementation

- https://github.com/pymatting/pymatting [GUCH20]
- Easy installation via pip install PyMatting

```
from pymatting import *
image = load_image("image.png", "RGB")
alpha = load_image("alpha.png", "GRAY")
# Estimate foreground
foreground = estimate_foreground_ml(image, alpha)
# Concatenate RGB and alpha channels
foreground_with_alpha = stack_images(foreground, alpha)
save_image("result.png", foreground_with_alpha)
```

[CLT13]	Qifeng Chen, Dingzeyu Li, and Chi-Ke intelligence, 35(9):2175–2188, 2013.
[GUCH20]	Thomas Germer, Tobias Uelwer, Stefan Journal of Open Source Software, 5(54):
[LDSX19]	Hao Lu, Yutong Dai, Chunhua Shen, an Proceedings of the IEEE International Co
[LLW07]	Anat Levin, Dani Lischinski, and Yair Wartern analysis and machine intelligence
[RRW+09]	Christoph Rhemann, Carsten Rother, J motivated online benchmark for image pages 1826–1833. IEEE, 2009.

6. Quality of Estimated Foreground

 Sum of absolute differences (SAD) for 27 images in dataset by [RRW+09] IndexNet [LDSX19] adapted for foreground estimation instead of alpha matting

7. Memory Usage

	Memory [MB]	Data Type
rs)	1 1 8 2	64-bit float
LW07]	7781	64-bit float
<19]	91648	32-bit float
	7850	64-bit float

9. References

Keung Tang. KNN matting. IEEE transactions on pattern analysis and machine

- an Conrad, and Stefan Harmeling. Pymatting: A python library for alpha matting. 4):2481, 2020.
- and Songcen Xu. Indices matter: Learning to index for deep image matting. In Conference on Computer Vision, pages 3266–3275, 2019.
- Weiss. A closed-form solution to natural image matting. IEEE transactions on ce, 30(2):228–242, 2007.
- , Jue Wang, Margrit Gelautz, Pushmeet Kohli, and Pamela Rott. A perceptually ge matting. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,