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Contributions
• Detailed study of scale channel networks, ob-

tained by applying the same CNN to multiple
rescaled copies of the input image.

• Formalism for analysing such networks,
showing provable scale covariance and scale
invariance for continuous network model.

• Experimental investigation of the scale gen-
eralization properties of different types of
networks, when performing testing at scales
not spanned by the training data, showing:
(i) very good scale generalization proper-
ties of our FovMax and FovAvg networks,
(ii) poor generalization properties of vanilla
CNNs and scale concatenation networks, and
(iii) moderate scale generalization properties
of a sliding windows networks.

• Experiments showing that our foveated scale
channel networks perform better compared to
the other approaches when training on small
sample sets with large scale variability.

Scale channel networks
Apply same CNN to multiple rescaled copies of any
image — shared weights between the scale channels.

• FovMax - with max pooling over the multiple
scale channels.

• FovAvg - with average pooling over the mul-
tiple scale channels.

Provable scale covariance
With scaling operator Ss defined by

(Ssf)(x) = f(S−1
s x) = fs(x) = f(x

s
).

and feature maps Γ(i), the raw scale channels are
scale covariant:

(Γ(i)Stf)(x, c, s) = (Γ(i)f)(x, c, st).

“Resizing of the input image corresponds to a mere
shift in the scale channels of the scale channel net-
work.”

Proof in paper based on both (i) operator notation
for the scaling group and (ii) an integral representa-
tion of the scale channel network.

Translational covariance: With shift operator
(Dδf)(x) = f(x− δ)

(Γ(i)Dδ f)(x, c, s) = (Γ(i)f)(x− Ssδ, c, s).

“Translational shift is rescaled depending upon the
scale channel.’

Provable scale invariance
Given an infinite number of scale channels, either
continuous or discrete γi for γ > 1, the supremum
over the scale channels

(Λsupf)(x, c) = sup
s∈S

[(φsf)(x, c, s)]

is provably scale invariant (proof in the paper).

Any other permutation invariant pooling operation,
such as the average, is also provably scale invariant.

MNISTLargeScale dataset
Images from the original MNIST dataset 28 × 28
rescaled by factors between 1/2 and 8 and embed-
ded in images of size 112× 112.

Training data for sizes 1, 2 and 4.

Testing data for sizes between 1/2 and 8 with rela-
tive size ratio 4

√
2.

50 000 training images, 10 000 testing images, 10 000
validation images.

Scale generalization vanilla CNN
Trained for each one of sizes 1, 2 and 4.
Tested at all sizes in [1/2, 8].
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Scale concatenation network
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Poor generalization to previously unseen scales (no in-
variance mechanism)

FovMax and FovAvg networks
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The invariance mechanism gives excellent generalization
to previously unseen scales.

Sliding windows network
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Some scale generalization but not as good as for FovMax
and FovAvg.

Training over multiple scales
Both training data and testing data with uniform
distribution over sizes between 1 and 4.
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The vanilla CNN and the scale concatenation network are
very much helped by training over multiple scales.

For the FovMax and FovAvg networks, training at a sin-
gle scale is basically as good as training over multiple
scales (see paper for details).

Small training sets, large scale variations
Both training data and testing data with uniform
distribution over sizes between 1 and 4.
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The FovMax and FovAvg networks make more efficient
use of small amounts of training data that contain large
scale variability.

Summary and conclusions
Presented methodology to handle scaling transforma-
tions in deep networks by scale channel networks.

Presented formalism to analyse scale channel net-
works and shown that they are scale covariant and
translationally covariant.

Combined with max pooling or average pooling
over the scale channels, the foveated scale channel
networks are also provably scale invariant.
Shown that the FovMax and FovAvg are robust to
scaling transformations and allow for scale general-
ization, with very good testing performance at scales
not spanned by the training data.

Investigated limited scale generalization perfor-
mance of vanilla CNNs, scale concatenation net-
works and sliding window networks.

Demonstrated that the FovMax and FovAvg net-
works lead to improvements for multi-scale training
data in the small sample regime.
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