SCA Net: Sparse Channel Attention Module for Action Recognition

Introduction

Our work aims at solving the following problem: How to learn channel attention with a more lightweight method? Thus, we develop more lightweight channel attention our module that can be easily incorporated into mainstream backbones for action recognition.

-We empirically demonstrate the importance of avoiding dense channel connection in learning channel attention, which motivates us to propose a more effective and efficient Sparse Channel Attention (SCA) module.

-We develop a novel Aggregate-Shuffle-Diverge (ASD) function to enhance local cross-group interaction, which brings no additional parameters but clearly improve the data representation capacity of SCA.

-We employ a multi-layer with small filters structure to accomplish 3D convolution factorization at the very beginning of our backbone network, so as to further reduce the size of the network.

Figure 1: The overview of SCA module

Method

SCA module: we denote our SCA module as:

$$Y = \delta(\sum_{i=1}^{G} F_{i(W_1, W_2)}(P(x_i)))$$

C

Hang Song*, YongHong Song, YuanLin Zhang

College of Artificial Intelligence - Xi'an Jiaotong University

$$F_{\omega_i} = W_2 \bigotimes \sigma(shuffle(\sum_{i=1}^G W_1 \bigotimes \omega_i))$$

Methods	Para.	Para.*	Top-1	Top-5
Factorized I3D	0	0	60.23%	84.56%
+SE-r ₂	C^2	2.41M	63.94%	86.25%
+SE-r ₄	$C^{2}/2$	1.20M	64.38%	86.55%
+SE-r ₈	$C^{2}/4$	0.60M	63.26%	85.87%
+SE-r ₁₆	$C^{2}/8$	0.30M	63.62%	85.25%
+SCA- G_2 (Ours)	$C^{2}/2$	1.20M	67.22%	88.28%
+SCA-G ₄ (Ours)	$C^{2}/4$	0.60M	66.40%	88.18%
+SCA-G ₈ (Ours)	$C^{2}/8$	0.30M	65.35%	87.59%
+SCA- G_{16} (Ours)	$C^{2}/16$	0.15M	64.10%	86.76%