PowerHC: Non linear normalization of distances for advanced nearest neighbor classification

Manuele Bicego¹ and Mauricio Orozco-Alzate²

¹University of Verona, Italy

²Universidad Nacional de Colombia - Sede Manizales, Colombia

Explainable/interpretable Pattern Recognition and advanced nearest neighbor rules

• Explainable/interpretable Pattern Recognition means giving importance not just to the accurate decision (the "what") but also to its reason (the "why") [3].

- The nearest neighbor rule (1-NN) and its variants are very interpretable since the nearest training objects, which assign the label, can be visualized.
- Two advanced 1-NN variants: the Hypersphere Classifier (HC) [2] and the Adaptive Nearest Neighbor rule (ANN) [5]. They scale the distances using radii.

HC and ANN

Power transformation

For \mathbf{x}_i , let r_i be the distance (radius of its influence hypersphere) to the nearest training object belonging to a different class, then:

$$d_{HC}(\mathbf{x}, \mathbf{x}_i) = d(\mathbf{x}, \mathbf{x}_i) - r_i$$
$$d_{ANN}(\mathbf{x}, \mathbf{x}_i) = \frac{d(\mathbf{x}, \mathbf{x}_i)}{r_i}$$

- HC and ANN are logarithmically related [4].
- It seems promising to investigate the effect of other non linear scalings, such as the power transformation [1]: $d(\mathbf{x}_i, \mathbf{x}_j)^{\rho}$, $\rho > 0$.

The PowerHC rule

• Let p_i the power-radius of \mathbf{x}_i ; i.e. the radius of its hypersphere computed using the power of the distances, then:

$$d_{PowerHC}(\mathbf{x}, \mathbf{x}_i) = d(\mathbf{x}, \mathbf{x}_i)^{\rho} - p_i$$

- Given this corrected distance, as in the case of ANN and HC, the classification is then performed using the NN rule (or the KNN rule).
- We tested PowerHC under several conditions of dimensionality, cardinality and number of classes, as well as on a challenging classification of volcano-seismic signals.

Results: 50 rep., 50-50 train-test with best ρ

• The best ρ is the one which minimizes the LOO 1-NN error on the training set.						
	Accuracies ($\rho \in \{0.2, 0.4, \dots, 9.8, 10\}$)			t-tests		
Method	А	В	С	D	B vs D	C vs D
Dataset	NN	NN-ANN	NN-HC	NN-PowerHC		
\star german-credit	68.72 ± 0.29	71.32 ± 0.29	71.58 ± 0.29	$72.59 \pm 0.28 \ (\rho = 6.2)$	Reject≯	Reject≯
★ pima	69.70 ± 0.33	72.43 ± 0.32	72.70 ± 0.32	$73.54 \pm 0.32 \ (\rho = 6.0)$	Reject≯	Reject≯
★ tic-tac-toe	79.52 ± 0.26	80.86 ± 0.25	83.04 ± 0.24	$84.36 \pm 0.23 \ (\rho = 5.8)$	Reject≯	Reject≯
★ yeast	51.02 ± 0.26	53.53 ± 0.26	53.78 ± 0.26	$54.31 \pm 0.26 \ (\rho = 3.4)$	Reject≯	Reject≯
★ arrhythmia	57.88 ± 0.48	55.07 ± 0.49	58.02 ± 0.48	$60.58 \pm 0.48 \ (\rho = 2.0)$	Reject≯	Reject≯
★ heart	76.55 ± 0.49	78.23 ± 0.48	78.50 ± 0.48	$79.28 \pm 0.47 \ (\rho = 3.2)$	Reject≯	Reject 🗡
★ haberman	66.32 ± 0.54	$68.70 {\pm} 0.53$	68.70 ± 0.53	$69.70 \pm 0.53 \ (\rho = 9.6)$	Reject≯	Reject ∕
wdbc	95.06 ± 0.18	96.16 ± 0.16	96.36 ± 0.16	$96.44 \pm 0.16 \ (\rho = 1.6)$	Reject 🗡	Accept
■ ecoli	81.79±0.42	83.52 ± 0.40	84.14 ± 0.40	$84.30 \pm 0.40 \ (\rho = 1.8)$	Reject≯	Accept
■ volcano_DTW	72.55 ± 0.27	78.41 ± 0.25	79.75 ± 0.25	$79.82 \pm 0.25 \ (\rho = 1.6)$	Reject≯	Accept
■ glass	68.50 ± 0.64	66.91 ± 0.64	67.66 ± 0.64	$67.79 \pm 0.64 \ (\rho = 1.2)$	Reject ∕	Accept
▲ sonar	83.44 ± 0.52	84.82 ± 0.50	84.49 ± 0.50	$84.85 \pm 0.50 \ (\rho = 0.2)$	Accept	Reject ∕*
▲ iris	93.33 ± 0.41	94.40 ± 0.38	93.89 ± 0.39	$94.43 \pm 0.37 \ (\rho = 0.2)$	Accept	Reject≯
▲ liver	61.45 ± 0.52	$61.40 {\pm} 0.52$	61.06 ± 0.52	$61.40 \pm 0.52 \ (\rho = 0.6)$	Accept	Reject ∕*
▲ vehicles	69.11 ± 0.32	68.79 ± 0.32	68.74 ± 0.32	$68.86 \pm 0.32 \ (\rho = 0.8)$	Accept	Reject ∕
▲ malaysia	70.64 ± 0.53	69.05 ± 0.54	68.72 ± 0.54	$69.08 \pm 0.54 \ (\rho = 0.2)$	Accept	Reject ∕*
◊ ionosphere	85.21 ± 0.38	93.36 ± 0.27	93.19 ± 0.27	$93.36 \pm 0.27 \ (\rho = 0.2)$	Accept	Accept
◊ wpbc	65.59 ± 0.68	$71.46 {\pm} 0.65$	71.18 ± 0.65	$71.65 \pm 0.65 \ (\rho = 3.4)$	Accept	Accept
◊ wine	95.00 ± 0.33	95.93 ± 0.30	96.00 ± 0.29	$96.05 \pm 0.29 \ (\rho = 0.6)$	Accept	Accept
♦ chromo	55.34 ± 0.29	55.24 ± 0.29	55.28 ± 0.29	$55.35 \pm 0.29 \ (\rho = 0.8)$	Accept	Accept
◊ volcano_Eucl	73.91 ± 0.27	75.73 ± 0.26	75.69 ± 0.26	$75.75 \pm 0.26 \ (\rho = 0.4)$	Accept	Accept
♦ soybean1	85.16 ± 0.44	84.24 ± 0.45	84.41±0.44	$84.59 \pm 0.44 \ (\rho = 1.6)$	Accept	Accept
◊ imox	92.94 ± 0.37	91.52 ± 0.40	91.73 ± 0.40	$91.79 \pm 0.40 \ (\rho = 0.8)$	Accept	Accept
◊ x80	94.38 ± 0.68	88.29 ± 0.95	88.29 ± 0.95	$88.95 \pm 0.92 \ (\rho = 3.6)$	Accept	Accept
♦ soybean2	82.03±0.66	81.62 ± 0.66	81.62 ± 0.66	$81.79 \pm 0.66 \ (\rho = 1.2)$	Accept	Accept
\triangle spirals	74.25 ± 0.63	68.56 ± 0.67	67.44 ± 0.67	$68.21 {\pm} 0.67~(\rho=0.2)$	≮ Reject	Reject≯

Conclusions

- We investigated the suitability of non linear scaling of distances to improve standard as well as advanced Nearest Neighbor approaches.
- In particular we studied PowerHC, a method which normalizes distances with a power transformation prior to applying the HC classifier.
- The experimental evaluation confirms the suitability of the proposed approach.
- Remarkably, we have shown that on a real world challenging application related to the classification of volcano-seismic signals, advanced nearest neighbor techniques —and especially the PowerHC— can be very beneficial.

Results: Best ρ vs. automatic tuning

• The automatic tuning approach is based on cross-validation.

• Automatic tuning is only slightly worse than using the best ρ . Results were also computed performed for KNN and its advanced variants (KNN-ANN, KNN-HC and KNN-PowerHC), reporting the best values among the results for $K \in \{1, 3, ..., 27, 29\}$; see the conference papers for details.

References

- A. Carli et al. "Nonlinear mappings for generative kernels on latent variable models," in: Proc. Int. Conf. on Pattern Recognition. 2010, 2134–2137.
- [2] N. Lopes and B. Ribeiro. "Incremental Hypersphere Classifier (IHC)". In: Machine Learning for Adaptive Many-Core Machines - A Practical Approach. Vol. 7. Studies in Big Data. Cham: Springer International Publishing, 2015. Chap. 6, pp. 107–123.
- [3] C. Mohar. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable. 2019. URL: https://christophm.github.io/interpretable-ml-book/.
- [4] M. Orozco-Alzate, S. Baldo, and M. Bicego. "Relation, Transition and Comparison Between the Adaptive Nearest Neighbor Rule and the Hypersphere Classifier". In: *ICIAP 2019 Proceed*ings. Vol. 11751. LNCS. GIRPR/IAPR. Trento, Italy: Springer, 2019, pp. 141–151.
- [5] J. Wang, P. Neskovic, and L. N. Cooper. "Improving nearest neighbor rule with a simple adaptive distance measure". In: *Pattern Recognition Letters* 28.2 (2007), pp. 207–213.