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Motivation

Training a model costs a lot of human labeling effort

I Known possible solution to reduce costs: Active Learning
I Selecting most informative images to be labeled
I Was efficient for methods before deep learning – one image at a time

I However,
I Deep learning models need more images for training – is AL still relevant?
I Unlabeled images are used only for acquisition
I Why not taking advantage of the unlabeled images?

How do acquisition strategies compete?

Baselines

I Random
Selects uniformly random images.

I Geometry [2, 4]
Selects most distant image to its nearest labeled or previously
acquired examples.

I Uncertainty
Selects most uncertain images: highest entropy of the classifier
output probabilities.

I CEAL [5]
Uses unlabeled data.

Random CoreSet Uncertainty CEAL
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No clear winner

Using more unlabeled data

Our idea:
Using unlabeled data at training

I Unsupervised pre-trained model performed once

I Using pseudo-labeled images at training, taking advantage of the whole dataset

Improving initialization

I Adding Unsupervised
pre-training

I Following Deep Cluster [1] to
pre-train CNN

I Assign classes to data given
closest centroids

I Train the network
I Re-assign classes

Improving active learning cycles

I Adding semi-supervised learning

I Iterative label propagation
following [3]

I Construct a reciprocal k-nn graph on
data features

I Label propagation
I Train classifier using pseudo-labels

Results

Random CoreSet + pre+ semi

Uncertainty CEAL + pre + semi
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Adding unsupervised pre-training
I Training performed only once at the beginning of the process

I Brings up to 6% improvement

Adding semi-supervised learning
I Results improved by up to 15% from baselines

I Taking advantage of the whole dataset

I Suits better deep learning models

Conclusions

I Active learning benefits from using unlabeled data

I We obtain better models requiring less labeled data

I Random selection of images is best with small budgets

I The selection method does not appear to matter
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