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We propose a novel multi-feature fusion network based on pose estimation,
for image based distracted driving detection. Since hand is the most important
part of driver to infer the distracted actions, our proposed method firstly
detects hands using the human body posture information. In addition to the
features extracted from the whole image, our network also include the
important information of hand and body posture. The global feature, hand
and pose features are finally fused by concatenation of feature maps. The
experimental results show that our method achieves state-of-the-art
performance on SZ Bus Driver dataset and AUC dataset.
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Fig. 3. Examples of SZ Bus Driver dataset.
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Fig. 4. Examples of AUC Distracted Driver dataset.

fusion network. Table II lists the performance of our fusion
network and that of global feature. One can observe from the
table that among the three backbones, Inception V3 achieved
the best performance for both global feature and the fused
feature. Regarding to the four categories of driver actions,
smoking seems to be the most difficult action to be correctly
recognized and talking on the phone seems to be the most
easy task. As smoke is a very small object, it could be
easily ignored during the convolution of the network. The
fused features also generally performed much better than
that of global feature, regardless of various backbones. Take
Inception V3 for example, the total accuracy (95.12%) of fused
features is significantly higher than that (77.29%) of global
feature. The results suggest that hand and pose features contain
discriminative information and can thus substantially improve
the performance of global feature.

In order to demonstrate the effectiveness of the proposed
network, we extract the global feature Fg and the fused
feature ffusion to visualize the feature distribution using t-
SNE. As shown in Fig. 5 (b), the fused features projected onto
a two-dimensional plane are densely clustered for each action
category and easy to distinguish. There are distinct boundaries
between features of different actions. In contrast, the global
features (Fig. 5 (a)) of samples from different categories are
mixed together on the lower-left corner and have ambiguous
boundaries.

In addition, we present the saliency maps [27] generated
for the test images in Fig. 6. The saliency map highlights
the pixels of the input image that make more contribution to

TABLE II
RESULT ON SZ BUS DRIVER DATASET

Feature Backbone C0 C1 C2 C3 Total

Global
VGG-16 74.04 83.01 41.78 85.80 73.35

ResNet-50 87.11 47.89 48.85 83.48 75.70
InceptionV3 83.19 82.14 22.48 90.53 77.28

Late
Fusion

VGG-16 90.84 84.55 72.25 92.45 88.78
ResNet-50 93.12 92.78 75.36 91.14 90.87
InceptionV3 95.85 90.63 80.87 92.74 92.93

Early
Fusion

VGG-16 94.13 95.38 82.35 66.16 91.09
ResNet-50 95.43 99.46 64.13 94.76 92.58
InceptionV3 96.46 97.66 89.40 95.27 95.75

TABLE III
RESULT ON AUC V1 AND V2 DATASET

Dataset Method Accuracy

AUC
V1

GA-Weighted Ensemble (2017) [21] 95.98
DenseNet+Latent Pose (2018) [23] 94.20

VGG with Regularization (2018) [10] 96.31
I3D-two stream (2019) [26] 77.10

AlexNet+HOG features (2019) [7] 93.19
Our method 96.28

AUC
V2

GA-Weighted Ensemble (2019) [22] 90.07
Our method 90.38

the recognition. For correctly classified testing samples, we
calculate the losses of the network, and back-propagate the
gradient of loss to the weight of the input layer and map them
with each pixel of the input image. The larger gradient of
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Fig. 5. The t-SNE visualization of global feature for SZ dataset (a) and AUC V2 dataset (c) and that of fused feature for SZ dataset (b) and AUC V2 dataset
(d).

the pixel, the more salient the pixel is decided to be. The
highlighted salient regions in Fig. 6 show that our proposed
network focus on the hand and pose feature to make the
decision. For example, the network looks at the salient regions
around the hand for phone and smoking, while the entire upper
body of the driver is salient for safe driving.

AUC Distracted Driver Dataset. We now evaluate the
performance or our method using publicly available AUC V1
and V2 datasets. Table III lists the accuracy of our method,
together with that of recent works in literature [21], [22], [23],
[10], [26], [7]. As there are overlaps between the drivers in
training set and testing set, the video frames in test set of AUC
V1 dataset is highly correlated with that in training set. As a
result, the performance of different methods on V1 is generally
better than that on V2. While the accuracy (96.28%) of our
method is very close to that (96.31%) of the best method
in literature on V1, the accuracy of our method (90.38%)
achieve the state-of-the-art performance on V2. Also, our
method outperforms those similar methods in literature. While
several body parts like hand, face and skin are adopted in [21],
[22], the spatial relationships is not explored. Furthermore,
the object detector employed are prone to noises and may
significantly interfere with the recognition. While hand feature
is not included in [23], the ablation study shown in Section
IV-D suggests that both pose and hand feature can significantly
improve the performance of global feature extracted from the
whole image.

Similar to what found on SZ Bus driver dataset, the distribu-
tion of fused feature for AUC V2 dataset (Fig. 5 (d)) is well
separated, while that of global feature (Fig. 5 (c)) is mixed
together. Again, the distribution confirms that the hand and
pose feature can significantly increase the discriminability of
global features.

Fig. 7 shows the saliency map generated for images of
different actions. One can observe from the figure that our
network looks at regions around hand for actions like texting,
playing phone adjusting radio and drinking. In contrast, the
upper body of driver is the focus for actions like safe driving
and reaching behind.

D. Ablation Study
We perform several experiments to evaluate the effective-

ness of three different features in our network (Inception V3

TABLE IV
ABLATION STUDY ON THREE DIFFERENT DATASETS

Dataset Feature AccuracyGlobal Hand Pose
X 77.28

X 85.58
SZ Bus X 88.29

X X 91.35
Driver X X 88.68

X X 91.84
X X X 95.75

AUC V1

X 95.22
X 90.86

X 91.36
X X 92.06

X X 95.65
X X 95.52
X X X 96.28

AUC V2

X 85.12
X 67.86

X 74.88
X X 79.36

X X 87.15
X X 87.31
X X X 90.38

as the backbone) on three datasets, i.e. SZ Bus Driver dataset,
AUC V1 and V2 dataset.

As shown in Table IV, when single feature is used, pose
feature achieves the best accuracy among three features on SZ
Bus Driver dataset, while global feature outperforms the other
two features on AUC V1 and V2 dataset. Since the viewpoints
of cameras in SZ Bus Driver dataset is much more diverse
than that of AUC dataset, pose information can effectively
reduce the interference of complex background and different
viewpoints. While the combination of hand and pose achieves
better performance than each of the three features, global
appearance representation seems to be more important than
hand and pose feature on AUC dataset.

The results of ablation study do suggest that the three
features are complementary and fusion could significantly
improve the recognition accuracy. Take SZ Bus Driver dataset
for example, the integration of hand and pose feature increase
the accuracy of global feature by 11% and 14%, respectively.
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More than 5% improvement has also been achieved for AUC
V2 dataset.

V. CONCLUSIONS

In this paper, we have developed an effective multi-feature
fusion network for driver distraction recognition. In this frame-
work, different features like global feature, hand and pose fea-
tures are extracted from the whole image, left and right hand
images and poses of the upper body of the driver, respectively.
The three features are then fused by weighted combination of
probability vectors and concatenation of feature maps. The
evaluation on both our own dataset and AUC datasets show
that our method achieves the best performance, among state-
of-the-art methods available in literature.
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Visualization

Fig: Examples of SZ Bus Driver 
dataset.

Fig: Examples of AUC Distracted Driver dataset. 

Fig: The t-SNE visualization of global feature for SZ dataset (a) and AUC 
V2 dataset (c) and that of fused feature for SZ dataset (b) and AUC V2 

dataset (d). 

Fig: The saliency maps on SZ Bus Driver dataset. 
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(a) C0: Playing the phone (b) C1: Talking on the phone (c) C2: Smoking (d) C3: Safe driving

Fig. 3. Examples of SZ Bus Driver dataset.

(a) C0: Drive safe (b) C1: Text right (c) C2: Talk right (d) C3: Text left (e) C4: Talk left

(f) C5: Adjust radio (g) C6: Drink (h) C7: Reaching behind (i) C8: Hair and makeup (j) C9: Talk to passanger

Fig. 4. Examples of AUC Distracted Driver dataset.

fusion network. Table II lists the performance of our fusion
network and that of global feature. One can observe from the
table that among the three backbones, Inception V3 achieved
the best performance for both global feature and the fused
feature. Regarding to the four categories of driver actions,
smoking seems to be the most difficult action to be correctly
recognized and talking on the phone seems to be the most
easy task. As smoke is a very small object, it could be
easily ignored during the convolution of the network. The
fused features also generally performed much better than
that of global feature, regardless of various backbones. Take
Inception V3 for example, the total accuracy (95.12%) of fused
features is significantly higher than that (77.29%) of global
feature. The results suggest that hand and pose features contain
discriminative information and can thus substantially improve
the performance of global feature.

In order to demonstrate the effectiveness of the proposed
network, we extract the global feature Fg and the fused
feature ffusion to visualize the feature distribution using t-
SNE. As shown in Fig. 5 (b), the fused features projected onto
a two-dimensional plane are densely clustered for each action
category and easy to distinguish. There are distinct boundaries
between features of different actions. In contrast, the global
features (Fig. 5 (a)) of samples from different categories are
mixed together on the lower-left corner and have ambiguous
boundaries.

In addition, we present the saliency maps [26] generated
for the test images in Fig. 6. The saliency map highlights
the pixels of the input image that make more contribution to

TABLE II
RESULT ON SZ BUS DRIVER DATASET

Feature Backbone C0 C1 C2 C3 Total

Global
VGG-16 74.04 83.01 41.78 85.80 73.35

ResNet-50 87.11 47.89 48.85 83.48 75.70
InceptionV3 83.19 82.14 22.48 90.53 77.28

Late
Fusion

VGG-16 90.84 84.55 72.25 92.45 88.78
ResNet-50 93.12 92.78 75.36 91.14 90.87
InceptionV3 95.85 90.63 80.87 92.74 92.93

Early
Fusion

VGG-16 94.13 95.38 82.35 66.16 91.09
ResNet-50 95.43 99.46 64.13 94.76 92.58
InceptionV3 96.46 97.66 89.40 95.27 95.75

TABLE III
RESULT ON AUC V1 AND V2 DATASET

Dataset Method Accuracy

AUC
V1

GA-Weighted Ensemble (2017) 95.98
DenseNet+Latent Pose (2018) 94.20

VGG with Regularization (2018) 96.31
I3D-two stream (2019) 77.10

AlexNet+HOG features (2019) 93.19
Our method 96.28

AUC
V2

GA-Weighted Ensemble (2019) 90.07
Our method 90.38

the recognition. For correctly classified testing samples, we
calculate the losses of the network, and back-propagate the
gradient of loss to the weight of the input layer and map them
with each pixel of the input image. The larger gradient of

Playing the Phone

• The whole original image contains global information.
• The actions of hand are important cues in driver distraction recognition.
• The pose information is robust against the interference of backgrounds.

Fig: The confusion matrix of three datasets. 

[h]
TABLE IV

ABLATION STUDY ON THREE DIFFERENT DATASETS

Dataset Feature AccuracyGlobal Hand Pose
X 77.28

X 85.58
X 88.29

SZ Bus Driver X X 91.35
X X 88.68
X X 91.84
X X X 95.75

AUC V1

X 95.22
X 90.86

X 91.36
X X 92.06

X X 95.65
X X 95.52
X X X 96.28

AUC V2

X 85.12
X 67.86

X 74.88
X X 79.36

X X 87.15
X X 87.31
X X X 90.38

C0: Playing the phone C1: Talking on the phone C2: Smoking C3: Safe driving
(a) C0: Playing the phone

C0: Playing the phone C1: Talking on the phone C2: Smoking C3: Safe driving(b) C1: Talking on the phone
C0: Playing the phone C1: Talking on the phone C2: Smoking C3: Safe driving

(c) C2: Smoking
C0: Playing the phone C1: Talking on the phone C2: Smoking C3: Safe driving(d) C3: Safe driving

Fig. 6. The saliency maps on SZ Bus Driver Dataset.
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