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1. Introduction

The precise segmentation of retinal blood vessels Is of great significance for early diagnosis of
eye-related diseases such as diabetes and hypertension. Due to the excellent performance of U-
Net, many recent methods for retinal blood vessel segmentation are based on U-Net. Although
previous U-Net variants perform well, they inevitably make the network more complex and less

3. Experiments

= Databases

We evaluate our proposed SA-UNet on two public retinal fundus image datasets: DRIVE and
CHASE DB1. We use the following data augmentation methods: (1) Random rotation; (2)
adding Gaussian noise; (3) color jittering; (4) horizontal, vertical and diagonal flips.

= Evaluation Metrics

For the purpose that we can estimate the performance of our proposed SA-UNet, the following
metrics are employed: Sensitivity (SE), Specificity (SP), F1-score (F1), Accuracy (ACC), Area
Under the ROC Curve (AUC) and Matthews Correlation Coefficient (MCC) .

Interpretable. In order to address these problems, we introduce spatial attention in U-Net and
propose a lightweight network model, which we named Spatial Attention U-Net (SA-UNet). We
evaluate SA-UNet on two public retinal fundus image datasets: DRIVE and CHASE_ DB1.
Experiments prove that SA-UNet is an effective method for retinal vessel segmentation.
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« Structured Dropout Convolutional Block
Although data augmentation is performed for the original datasets, serious overfitting Is still
observed during original U-Net training, as shown in Fig. 2 (left). Therefore a lightweight U-Net
with 18 convolutional layers is employed as our basic architecture, but it still has over-fitting
problem, as shown in Fig. 2 (middle). Motivated by the successful application of DropBlock In
recent computer vision works, we adopt DropBlock to regularize the network.

DropBlock, a structured form of dropout,
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network.

4. Conclusion

Inspired by the successful application of DropBlock and batch normalization in convolutional
neural networks, we replace the convolutional block of U-Net with a structured dropout
convolutional block that integrates DropBlock and batch normalization as our Backbone. In
addition, in the retinal fundus images, the difference between the blood vessel area and the
background Is not obvious, especially the edges and small blood vessels. To help the network
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learn these, we add a spatial attention module between the encoder and decoder of the Backbone
and propose Spatial Attention U-Net (SA-UNet). The experimental results demonstrate that
using structured dropout convolutional blocks and the introducing spatial attention are effective,
and SA-UNet Is a very promising method for retinal vessel segmentation.
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