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Abstract

In the last decade the use of artificial neural networks (ANNSs) in many fields like image processing or speech recognition has become a common
practice because of their effectiveness to solve complex tasks. However, in such a rush, very little attention has been paid to security aspects. In this
work we explore the possibility to embed a watermark into the ANN parameters. We exploit model redundancy and adaptation capacity to lock a
subset of its parameters to carry the watermark sequence. The watermark can be extracted in a simple way to claim copyright on models but can be
very easily attacked with model fine-tuning. To tackle this culprit we devise a novel watermark aware training strategy. We aim at delving into the loss
landscape to find an optimal configuration of the parameters such that we are robust to fine-tuning attacks towards the watermarked parameters. Our
experimental results on classical ANN models trained on well-known MNIST and CIFAR-10 datasets show that the proposed approach makes the
embedded watermark robust to fine-tuning and compression attacks.

How to delve in the loss landscape? Loss delving algorithm

» We start from a naive and simple solution (I) that embeds the
watermark in the ANN model weights;

» we embed the watermark in all the layers of the deep model,
Including the output layer; L

» we minimize the loss on Iy while maximizing it on R other oss
models, having the same non-watermarked parameters W, but
adding a noise AW to the watermarked parameters W,;

» this way, we guarantee the watermarked weights lay into a very
steep valley, providing robust solutions to attacks without

iImpacting the ANN performance.
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From the model which is trained updating non-watermarked parameters (a) we add some noise
on the watermarked parameters only in R replicas of our original network Iy — in this case I (b).
Then, the gradient on I} is computed (c) and projected to the non-watermarked parameters
space (d).
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Fine-tuning attack on LeNet5-caffe (e) trained on MNIST, ALL-CNN-C (g) and ResNet-32 (i) trained on CIFAR-10.
Quantization attack on LeNet5-caffe (f), ALL-CNN-C (h) and ResNet-32 (j).



