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Abstract

In the last decade the use of artificial neural networks (ANNs) in many fields like image processing or speech recognition has become a common
practice because of their effectiveness to solve complex tasks. However, in such a rush, very little attention has been paid to security aspects. In this
work we explore the possibility to embed a watermark into the ANN parameters. We exploit model redundancy and adaptation capacity to lock a
subset of its parameters to carry the watermark sequence. The watermark can be extracted in a simple way to claim copyright on models but can be
very easily attacked with model fine-tuning. To tackle this culprit we devise a novel watermark aware training strategy. We aim at delving into the loss
landscape to find an optimal configuration of the parameters such that we are robust to fine-tuning attacks towards the watermarked parameters. Our
experimental results on classical ANN models trained on well-known MNIST and CIFAR-10 datasets show that the proposed approach makes the
embedded watermark robust to fine-tuning and compression attacks.

How to delve in the loss landscape?

I We start from a naive and simple solution (Γ0) that embeds the
watermark in the ANN model weights;

I we embed the watermark in all the layers of the deep model,
including the output layer;

I we minimize the loss on Γ0 while maximizing it on R other
models, having the same non-watermarked parameters Wx but
adding a noise ΔW to the watermarked parameters Wx;

I this way, we guarantee the watermarked weights lay into a very
steep valley, providing robust solutions to attacks without
impacting the ANN performance.

(a) (b) (c) (d)

From the model which is trained updating non-watermarked parameters (a) we add some noise
on the watermarked parameters only in R replicas of our original network Γ0 – in this case Γ1 (b).
Then, the gradient on Γ1 is computed (c) and projected to the non-watermarked parameters
space (d).

Loss delving algorithm

Results
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(j)
Fine-tuning attack on LeNet5-caffe (e) trained on MNIST, ALL-CNN-C (g) and ResNet-32 (i) trained on CIFAR-10.
Quantization attack on LeNet5-caffe (f), ALL-CNN-C (h) and ResNet-32 (j).


