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3D hand pose estimation still suffers from the problems of predicting inaccurate or invalid poses The proposed PEAN achleve§ the state-of-the-
which conflict with physical and kinematic constraints. To address these problems, we propose art.resu.lts on three challenging hand pose
a novel 3D hand pose estimation adversarial network (PEAN) which can implicitly utilize such estimation datasets: NYU, MSRA and ICVL.
constraints to regularize the prediction in an adversarial learning framework. = :
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PEAN contains two parts: a 3D hierarchical estimation network (3DHNet) to predict hand pose, Methods -
which decouples the task into multiple subtasks with a hierarchical structure; a pose discrimination ICVL NYU MSRA
. . . sedhack = = (
network (PDNet) to judge the reasonableness of the estimated 3D hand pose, which back-propagates e - - et
the constraints to the estimation network. DeepPrior 10.4 19.73 ,
. . . . . . . . = " + B
During the adversarial learning process, PDNet is expected to distinguish the estimated 3D hand %‘;"p‘;&:l" ! o 2
pose and the ground truth, while 3DHNet is expected to estimate more valid pose to confuse PDNet. Pose-Ren 6.79 11.81 8.65
o ~ - e Ren-4x6x6 7.63 13.39 :
Ren-9x6x6 7.31 12.69 9.7
DensReg 13 10.27 1.2
CrossInfoNet 6.73 10.08 7.86
3DCNN . 14.1 9.6
SHPR-Net 7.22 10.78 7.86
HandPointNet 6.94 10.54 8.5
Point-to-Point 6.3 0.1 /5%
V2V-PoseNet* 6.28 8.42 7.59
3DHNet(ours) 6.28 8.73 .58
PEAN(ours) 5.85 8.59 6.91

Fig. 1. Overall structure of PEAN. PEAN is comprised of two components: a hierarchical hand pose estimation network, named 3DHNet, and a pose The results of ablation StUdy ve rlfy the ablllty
discrimination network, named PDNet.
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Fig. 3. Network structure of PDNet. The input of PDNet is 3D hand pose

formed by ground truth or formed by the predicted results of 3DHNet, which

Fig. 2. Network structure of 3DHNet. Based on 3D CNN, the input of 3DHNet is the volumetric form of hand and the output is 3D heatmap of each joint. ~ Will be judged as real or false pose by PDNet.



