

Snapshot Hyperspectral Imaging Based on Weighted High-order Singular Value Regularization

Niankai Cheng¹, Hua Huang², Lei Zhang¹, and Lizhi Wang¹

¹ Beijing Institute of Technology, ² Beijing Normal University

Introduction

Motivation

- The vectorization process ignores the high-dimensionality nature of hyperspectral image and breaks the original structure.
- High-order tensors can provide a more accurate representation is to deliver the intrinsic structure of high-dimensionality signals.

■ Contributions

- We propose a high-order tensor optimization based method to boost the reconstruction performance for snapshot hyperspectral imaging reconstruction.
- We propose a weighted high-order singular value regularization, where the spatial self-similarity, spectral correlation and joint correlation will be fully exploited.
- We develop an general reconstruction framework for snapshot hyperspectral imaging, which can be effectively solved via an alternating minimization algorithm.

Related work

- [1] Fu et al. Exploiting spectral-spatial correlation for coded hyperspectral image restoration. CVPR 2016.
- [2] Choi et al. High-quality hyperspectral reconstruction using a spectral prior. TOG 2017.
- [3] Zhang et al. Ista-net: Interpretable optimization-inspired deep network for image compressive sensing. CVPR 2018.
- [4] Xiong et al. Hscnn: Cnn-based hyperspectral image recovery from spectrally undersampled projections. CVPR 2017.
- [5] Wang et al. Hyperspectral image reconstruction using a deep spatial-spectral prior. CVPR 2019.

Our approach

■ Weighted High-order Singular Value Regularization

Weighted high-order singular value regularization

$$\Gamma(\mathbf{G}) = \tau \|\mathbf{R}(\mathbf{X}) - \mathbf{G} \times_{\mathbf{1}} \mathbf{U}_{\mathbf{1}} \times_{\mathbf{2}} \mathbf{U}_{\mathbf{2}} \times_{\mathbf{3}} \mathbf{U}_{\mathbf{3}}\|_{F}^{2} + \|\mathbf{w} \odot \mathbf{G}\|_{1}$$

$$w^{t+1} = c/(|\mathbf{w}^{t}| + \varepsilon)$$

■ Model Based Reconstruction

Objective function

$$\min_{\mathbf{X}, \mathbf{P}^l} \frac{1}{2} \|\mathbf{Y} - \Phi(\mathbf{X})\|_F^2 + \sum_{l=1}^L (\tau \|\mathbf{R}(\mathbf{X}) - \mathbf{G} \times_1 \mathbf{U}_1 \times_2 \mathbf{U}_2 \times_3 \mathbf{U}_3\|_F^2 + \|\mathbf{w} \odot \mathbf{G}\|_1)$$

Experimental Results

■ Results on CASSI

Indexes	TV	AMP	NSR	LRMA[1]	AE[2]	ISTA[3]	HSCNN[4]	SPR[5]	Ours
PSNR	23.16	23.18	26.13	25.94	25.72	20.60	25.09	24.48	28.05
SSIM	0.7130	0.6600	0.7610	0.7930	0.7720	0.5499	0.7334	0.7395	0.8302
ERGAS	258.32	256.76	189.19	195.63	197.32	344.57	206.97	224.19	153.06

ISTA

Curs

Reference

■ Results on DCCHI

Indexes	TV	AMP	NSR	LRMA	Ours
PSNR	28.51	28.52	32.58	37.45	37.81
SSIM	0.8938	0.8526	0.9377	0.9732	0.9733
ERGAS	167.14	140.75	107.71	57.30	51.38

