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Adversarial Examples

Deep neural networks (DNNs) have demonstrated remarkable success in
solving complex prediction tasks. However, recent studies show that they are
particularly vulnerable to adversarial attacks in the form of small
perturbations to inputs that lead DNNs to predict incorrect outputs.
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Figure 1. Adversarial Example[1].

Adversarial Training: AT and VAT

Several studies have found that the performance of DNNs can be improved
significantly by enforcing the prediction consistency of DNNs in response to
original inputs and their perturbated versions.

To improve the robustness of DNNs, researchers propose different
approaches to regularize the training of DNNs by augmenting the training set
with adversarial examples, such as AT[1] only for supervised learning, and
VAT[2] for both supervised learning and semi-supervised learning.

AT solves the following constrained optimization problem:

Lat(T1, Y1, Taav, 0) = D [h(yi|x1), ply|®i + Taav, 0))]
with r.q, = argmaxD [h (y|x;), p (y|x; + 7, 8)],
||| <e

VAT deals with a slightly different constrained optimization problem:

LyaT(T+, Taav, 0)=D |p(y|x.,0), p(y|Ts +Tadv, 0)]
with r,q, = argmaxD [p(y|x.. @), p(y|x, + r,8)].

rillrllz<e

However, the perturbations exploited by AT and VAT are additive in the sense
that these perturbations are added pixel-wise to input examples.
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Multiplicative Perturbations

We propose a new type of adversarial perturbations that is multiplicative:

Tady = T + Tady ‘ Trady =T @O 2

With the new perturbations, we derive the new loss functions for xAT as
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Compared to the additive perturbations exploited by AT and VAT, the
multiplicative perturbations are:
(1) More perceptible (2) More interpretable
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(a) Additive Perturbation (b) Multiplicative Perturbation

However, the discrete essence
of z makes it undifferentiable.

Fig. 3. The effect of ¢ on different perturbations. (a) shows that the additive
perturbations are on the surface of a ball with the radius e. (b) demonstrates
that our multiplicative perturbations are distributed within the rectangle.

Optimization and Efficient Computing

To address the undifferentiable issue in Eq.(9), We adopt Stochastic
Variational Optimization[3] and the Hard Concrete Gradient Estimator[4]
techniques to optimize Eq.(12): log ctxaqy =arg maxEy,(0,1) [AD(g(f(log o, u)). z, 0)]
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Then we generate the mask (12)

by sampling:

Zxadv = 9(f (log atxagy, 1)), u~U0,1).

The optimization can be implemented
transductively or inductively as Fig.2.
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Fig. 2. The pipeline of the transductive and inductive implementations of multiplicative adversarial training.

And our xAT/xVAT can update them
simultaneously in one step.
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Compare with other methods

We evaluate the performance of xAT and xVAT in semi-supervised learning
and supervised learning on MNIST, SVHN, CIFAR- 10 and CIFAR-100. And it
demonstrates that xAT/xVAT can achieve comparable results.

TEST ACCURACIES OF SUPERVISED LEARNING ON CIFAR-10 AND
CIFAR-100. THE RESULTS ARE AVERAGED OVER 5 RUNS.

TEST ACCURACIES OF SEMI-SUPERVISED LEARNING ON MNIST, SVHN
AND CIFAR-10. THE RESULTS ARE AVERAGED OVER 5 RUNS.

Test Accuracy (%)

Method MNIST SVHN CIFAR-10 Test Accuracy (%)

Method

N;=100 N;=1000 N;=4000 CIFAR-10  CIFAR-100

GAN with feature match [22] 99.07 91.89 81.37 Baseline (MLE) [14] 03.24 73.58
CatGAN [23] 98.09 - 80.42 I1-model [14] 94.44 73.68
Ladder Networks [24] 98.94 - 79.60 .

T-model [14] ) 94,57 2345 Temporal ense:‘nblmg [14] 94.40 73.70
Mean Teacher [16] S 9479 8226 AT, Lo (ours) 93.90 74.04
VAT [6] 98.64 9423  85.18 VAT [6] 94.19 75.02
xVAT (Transductive) 98.02 93.99 85.82 XAT (Inductive) 93.70 74.62
xVAT (Inductive) 97.82 9422 86.59 xVAT (Inductive) 03.88 75.30

Speed Comparison

Thanks to the hard concrete reparameterization, the resulting algorithms xAT
and xVAT are computationally more efficient than their additive counterparts
as the table shows.

THE TRAINING SPEEDS OF VAT AND XVAT ON THE FOUR BENCHMARK
DATASETS. THE RESULTS ARE AVERAGED OVER 3 RUNS.

Seconds per epoch

Method MNIST SVHN CIFAR-10 CIFAR-100
VAT (ours)* 431 543 513 515
XVAT (Transductive) 4.54 36.6 341 39.3
X VAT (Inductive) 4.33 35.7 33.6 344

Visualization of Multiplicative Perturbations

The multiplicative perturbations are
(1) More perceptible (2) More interpretable
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Fig. 5. Visualization of multiplicative perturbatlons and additive perturbations from xVAT and VAT. (a) The evolution of log ax and @y,q, during the training
of xXVAT on benchmark datasets. (b) Comparison of multiplicative and additive perturbations on example images from benchmark datasets.

Robustness and Sparsity
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Fig. 6. Histograms of the classifier weights learned by MLE, VAT and xVAT on CIFAR-100. The histograms are computed from different CNN layers.
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