A Novel Random Forest Dissimilarity Measure for Multi-View Learning Hongliu Cao^{1,2}, Simon Bernard¹, Robert Sabourin², Laurent Heutte¹ ¹LITIS, Université de Rouen Normandie, 76000 Rouen, France ²LIVIA, École de Technologie Supérieure (ÉTS), Université du Québec, Montreal, QC, Canada ## Multi-view learning (MVL) Instances are described by ${\cal Q}$ different vectors and the task is to learn: $$h: \mathcal{X}^{(1)} \times \mathcal{X}^{(2)} \times \cdots \times \mathcal{X}^{(Q)} \to \mathcal{Y}$$ A MVL training set T is typically composed of Q subsets: $$T^{(q)} = \{ (\mathbf{x}_1^{(q)}, y_1), (\mathbf{x}_2^{(q)}, y_2), \dots, (\mathbf{x}_n^{(q)}, y_n) \}, \forall q = 1..Q$$ ## The Random Forest Dissimilarity (RFD) framework [2] - 1. Compute $Q n \times n$ dissimilarity matrices from the $T^{(q)}, \forall q = 1...Q$ such that each cell is a dissimilarity $d(\mathbf{x}_i, \mathbf{x}_j)$ - 2. Dissimilarities are measured with a Random Forest (RF) trained on $T^{\left(q\right)}$ - 3. Merge the Q dissimilarity matrices to form a joint RFD matrix - 4. Train a new classifier on this RFD matrix as a new training set ## The RF dissimilarity measure \cdot Let \mathcal{L}_k be the set of leaves in the k^{th} tree $$l_k: \mathcal{X} \to \mathcal{L}_k$$ be a function that maps any \mathbf{x} to its leaf The similarity $d^{(k)}(\mathbf{x}_i, \mathbf{x}_i)$ given by the k^{th} tree, is $$d^{(k)}(\mathbf{x}_i, \mathbf{x}_j) = \begin{cases} 1, if l_k(\mathbf{x}_i) = l_k(\mathbf{x}_j) \\ 0, otherwise \end{cases}$$ - · The similarity $d(\mathbf{x}_i, \mathbf{x}_j)$ given by the forest is the average of the $d^{(k)}(\mathbf{x}_i, \mathbf{x}_j)$ over all the trees - · The final dissimilarity is given by $1 - d(\mathbf{x}_i, \mathbf{x}_j)$ We argue that this measure is too rough (0/1), particularly for MVL ⇒ New method for measuring dissimilarity with RF for Multi-View Learning - 1. Use RF classifiers for learning dissimilarity representations for MVL - 2. Two novel ways to learn dissimilarities from RF classifiers within the RFD framework - 3. Validation by comparing them to 4 methods from the literature, including metric learning and other RF-based dissimilarity measure ## Proposed method 1: RFD with Node Confidence (RFD_{NC}) - · Issue: all the leaves are not equally reliable for estimating (dis)similarities - · Weight the RFD measure with a node confidence estimate - Use Out-of-Bag instances ([1]) of each tree for computing these weights - \cdot For a given instance $\mathbf{x}_t,$ its weight is given by : $$w_p(\mathbf{x}_t) = \frac{1}{|l_p(\mathbf{x}_t)|} \sum_{\mathbf{x}_i \in l_p(\mathbf{x}_t)} I(h_p(\mathbf{x}_i) = y_i)$$ where $|l_p(\mathbf{x}_t)|$ is the number of training instances, including the OOB, that have landed in the same terminal node as \mathbf{x}_t . # Proposed method 2 : RFD with Instance Hardness (RFD_{IH}) - · Issue: an instance have the same dissimilarity to all the training instances of the node in which it is located - · Proposition: - Weight the RFD measures with an instance hardness estimate ([7]) · Use the $$k$$ -Disagreeing Neighbors (kDN) measure: $$kDN(\mathbf{x}_i) = \frac{|\mathbf{x}_j: \mathbf{x}_j \in kNN(\mathbf{x}_i) \cap y_j \neq y_i|}{l}$$ where $kNN(\mathbf{x}_i)$ stands for the k nearest neighbors of \mathbf{x}_i \cdot The dissimilarity between any ${f x}$ and the training instance ${f x}_i$ is: $$d_p(\mathbf{x}, \mathbf{x}_i) = \left\{ \begin{array}{ll} kDN(\mathbf{x}_i), & if \ l_p(\mathbf{x}) = l_p(\mathbf{x}_i) \\ 1, & otherwise \end{array} \right.$$ # Experimental validation - 15 real-world multi-view datasets (medical, image and text classification) - · 4 competitors for estimating dissimilarities within the RFD framework: - \cdot Euclidean distance (see EUDiss results in the paper) - · the LMNN metric learning method ([4]) - · the original RFD method (e.g. in [6]) - \cdot the RFD variant proposed in [5] $(RFDis_{PB})$ - · 10 times stratified random split 50% training 50% test - · 2 statistical tests of significance: - · Nemenyi post-hoc test with Critical Differences (CD) ([3]) - · Pairwise analysis based on the Sign test, from the number of wins, ties and losses Average precision (with standard deviation) and mean rank | | LMNNDis | RFDis | $RFDis_{PB}$ | $RFDis_{NC}$ | $RFDis_{IH}$ | |----------|------------------|------------------|------------------|------------------|------------------------------------| | AWA8 | 42.28 ± 3.13 | 56.06 ± 1.35 | 56.38 ± 1.47 | 56.34 ± 1.68 | 56.22 ± 1.01 | | AWA15 | 28.25 ± 1.60 | 37.90 ± 1.49 | 37.62 ± 1.40 | 37.93 ± 1.50 | 38.23 ± 0.83 | | Metab. | 67.08 ± 4.04 | 67.71 ± 5.12 | 67.50 ± 5.76 | 67.08 ± 6.31 | 69.17 ± 5.80 | | Mfeat. | 96.87 ± 0.79 | 97.56 ± 0.99 | 97.63 ± 0.95 | 97.63 ± 1.00 | 97.53 ± 1.00 | | NUSW2 | 90.33 ± 1.55 | 92.49 ± 2.01 | 92.49 ± 1.81 | 92.67 ± 1.47 | 92.82 ± 1.93 | | BBC | 93.02 ± 1.29 | 92.82 ± 0.67 | 93.00 ± 0.67 | 92.33 ± 0.49 | 95.46 ± 0.65 | | lowGr. | 62.33 ± 7.04 | 63.48 ± 3.76 | 63.72 ± 4.67 | 63.95 ± 3.64 | 63.95 ± 5.62 | | NUSW3 | 78.02 ± 2.69 | 79.41 ± 1.94 | 79.64 ± 2.19 | 79.91 ± 2.14 | 80.32 ± 1.95 | | progr. | 62.63 ± 5.86 | 63.42 ± 6.49 | 63.42 ± 7.48 | 63.95 ± 6.56 | 65.79 ± 4.71 | | LSVT | 85.24 ± 2.84 | 83.33 ± 3.97 | 82.70 ± 3.44 | 83.49 ± 3.56 | 84.29 ± 3.51 | | IDHCo. | 71.47 ± 2.30 | 76.47 ± 3.95 | 76.47 ± 4.16 | 76.18 ± 3.82 | $\textbf{76.76} \pm \textbf{3.59}$ | | nIDH1 | 73.26 ± 3.49 | 79.53 ± 3.57 | 79.53 ± 3.72 | 79.77 ± 3.46 | 80.70 ± 3.76 | | BBCSp. | 73.77 ± 5.45 | 81.75 ± 2.70 | 82.56 ± 2.85 | 79.93 ± 3.11 | 90.18 ± 1.96 | | Cal20 | 87.50 ± 0.78 | 89.12 ± 0.69 | 89.27 ± 1.01 | 89.06 ± 1.19 | 89.76 ± 0.80 | | Cal7 | 95.09 ± 0.66 | 95.21 ± 0.67 | 95.51 ± 0.50 | 95.34 ± 0.48 | 96.03 ± 0.53 | | Avg rank | 4.83 | 3.67 | 2.83 | 2.93 | 1.53 | - + $RFDis_{IH}$ is the most accurate method on 10 datasets. Its average rank is 1.53 - + The RF-based dissimilarity methods achieve the best results for 14 datasets - + These results are confirmed by the statistical tests (cf. Figure below) # Aknowledgment This work is part of the DAISI project, co-financed by the European Union with the European Regional Development Fund (ERDF) and by the Normandy Region. - Leo Breiman. "Random forests". In: Machine Learning 45.1 (2001), pp. 5-32. - Hongliu Cao et al. "Random forest dissimilarity based multi-view learning for Radiomics application". In: Pattern Recognition 88 (2019), pp. 185–197. - Janez Demšar. "Statistical comparisons of classifiers over multiple data sets". In: Journal of Machine Learning Research 7 (2006), pp. 1–30. - Carlotta Domeniconi, Dimitrios Gunopulos, and Jing Peng. "Large margin nearest neighbor classifiers". In: IEEE transactions on Neural Networks 16.4 (2005), pp. 899–909. - [5] Cristofer Englund and Antanas Verikas. "A novel approach to estimate proximity in a random forest: An exploratory study". In: Expert Systems with Applications 39.17 (2012), pp. 13046–13050. - Katherine R Gray et al. "Random forest-based similarity measures for multi-modal classification of Alzheimer's disease", In: NeuroImage 65 (2013), pp. 167-175. [6] Michael R Smith, Tony Martinez, and Christophe Giraud-Carrier. "An instance level analysis of data complexity". In: Machine Learning 95.2 (2014), pp. 225–256.