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Multi-view learning (MVL)

Instances are described by Q different vectors and the task is to learn:
h : X (1) × X (2) × · · · × X (Q) → Y

A MVL training set T is typically composed of Q subsets:
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The Random Forest Dissimilarity (RFD) framework [2]

1. ComputeQ n× n dissimilarity matrices from the T (q), ∀q = 1..Q such that each
cell is a dissimilarity d(xi,xj)

2. Dissimilarities are measured with a Random Forest (RF) trained on T (q)

3. Merge the Q dissimilarity matrices to form a joint RFD matrix

4. Train a new classifier on this RFD matrix as a new training set

The RF dissimilarity measure

xi ,xj

d(xi,xj) = 1
L
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d(k)(xi,xj)

• Let Lk be the set of leaves in the kth tree
and

lk : X → Lk

be a function that maps any x to its leaf
from Lk

• The similarity d(k)(xi,xj) given by the
kth tree, is

d
(k)

(xi,xj) =

{
1, if lk(xi) = lk(xj)

0, otherwise

• The similarity d(xi,xj) given by the
forest is the average of the d(k)(xi,xj)

over all the trees

• The final dissimilarity is given by
1 − d(xi,xj)

We argue that this measure is too rough (0/1), particularly for MVL
⇒ New method for measuring dissimilarity with RF for Multi-View Learning

Contributions

1. Use RF classifiers for learning dissimilarity representations for MVL

2. Two novel ways to learn dissimilarities from RF classifiers within the RFD
framework

3. Validation by comparing them to 4 methods from the literature, including metric
learning and other RF-based dissimilarity measure

Proposed method 1 : RFD with Node Confidence (RFDNC )

• Issue: all the leaves are not equally reliable for estimating (dis)similarities
• Proposition:
• Weight the RFD measure with a node confidence estimate
• Use Out-of-Bag instances ([1]) of each tree for computing these weights
• For a given instance xt , its weight is given by :

wp(xt) =
1

|lp(xt)|
∑

xi∈lp(xt)

I(hp(xi) = yi)

where |lp(xt)| is the number of training instances, including the OOB, that have
landed in the same terminal node as xt .

Proposed method 2 : RFD with Instance Hardness (RFDIH )

• Issue: an instance have the same dissimilarity to all the training instances of the
node in which it is located

• Proposition:
• Weight the RFD measures with an instance hardness estimate ([7])
• Use the k-Disagreeing Neighbors (kDN) measure:

kDN(xi) =
|xj : xj ∈ kNN(xi) ∩ yj 6= yi|

k
where kNN(xi) stands for the k nearest neighbors of xi

• The dissimilarity between any x and the training instance xi is:

dp(x,xi) =

{
kDN(xi), if lp(x) = lp(xi)

1, otherwise

Experimental validation

• 15 real-world multi-view datasets (medical, image and text classification)
• 4 competitors for estimating dissimilarities within the RFD framework:
• Euclidean distance (see EUDiss results in the paper)
• the LMNN metric learning method ([4])
• the original RFD method (e.g. in [6])
• the RFD variant proposed in [5] (RFDisPB )

• 10 times stratified random split 50% training - 50% test
• 2 statistical tests of significance:
• Nemenyi post-hoc test with Critical Differences (CD) ([3])
• Pairwise analysis based on the Sign test, from the number of wins, ties and
losses

Results

Average precision (with standard deviation) and mean rank

LMNNDis RFDis RFDisPB RFDisNC RFDisIH

AWA8 42.28 ± 3.13 56.06 ± 1.35 56.38 ± 1.47 56.34 ± 1.68 56.22 ± 1.01

AWA15 28.25 ± 1.60 37.90 ± 1.49 37.62 ± 1.40 37.93 ± 1.50 38.23 ± 0.83

Metab. 67.08 ± 4.04 67.71 ± 5.12 67.50 ± 5.76 67.08 ± 6.31 69.17 ± 5.80

Mfeat. 96.87 ± 0.79 97.56 ± 0.99 97.63 ± 0.95 97.63 ± 1.00 97.53 ± 1.00

NUSW2 90.33 ± 1.55 92.49 ± 2.01 92.49 ± 1.81 92.67 ± 1.47 92.82 ± 1.93

BBC 93.02 ± 1.29 92.82 ± 0.67 93.00 ± 0.67 92.33 ± 0.49 95.46 ± 0.65

lowGr. 62.33 ± 7.04 63.48 ± 3.76 63.72 ± 4.67 63.95 ± 3.64 63.95 ± 5.62

NUSW3 78.02 ± 2.69 79.41 ± 1.94 79.64 ± 2.19 79.91 ± 2.14 80.32 ± 1.95

progr. 62.63 ± 5.86 63.42 ± 6.49 63.42 ± 7.48 63.95 ± 6.56 65.79 ± 4.71

LSVT 85.24 ± 2.84 83.33 ± 3.97 82.70 ± 3.44 83.49 ± 3.56 84.29 ± 3.51

IDHCo. 71.47 ± 2.30 76.47 ± 3.95 76.47 ± 4.16 76.18 ± 3.82 76.76 ± 3.59

nIDH1 73.26 ± 3.49 79.53 ± 3.57 79.53 ± 3.72 79.77 ± 3.46 80.70 ± 3.76

BBCSp. 73.77 ± 5.45 81.75 ± 2.70 82.56 ± 2.85 79.93 ± 3.11 90.18 ± 1.96

Cal20 87.50 ± 0.78 89.12 ± 0.69 89.27 ± 1.01 89.06 ± 1.19 89.76 ± 0.80

Cal7 95.09 ± 0.66 95.21 ± 0.67 95.51 ± 0.50 95.34 ± 0.48 96.03 ± 0.53

Avg rank 4.83 3.67 2.83 2.93 1.53

Analysis

+ RFDisIH is the most accurate method on 10 datasets. Its average rank is 1.53

+ The RF-based dissimilarity methods achieve the best results for 14 datasets

+ These results are confirmed by the statistical tests (cf. Figure below)
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