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Introduction

Deep learning (DL) image reconstruction techniques have remarkable results

but lack estimates of uncertainty

This is critical in sensitive domains such as medical imaging

There are many "types or sources" of uncertainty but the most common in

medical imaging are:

Epistemic - uncertainty in the parameters (i.e., model uncertainty)

Aleatoric - stochastic variability in the data

Our goal: a DL reconstruction method that allows us to account for

epistemic uncertainty in medical images

Deep Unrolled Optimisation

Unrolled optimisation mimics iterative methods but

1. Executes only a finite number of iterations

2. Computes the "updates" using DNNs

The iterates are computed as residual updates with a feasibility projection:

xk = ReLu(xk−1 + δxk−1)

The increments δxk−1 are computed as

δxk−1 = fϕk (∇D (y,Axk−1) , xk−1) =: fϕk(∇D, xk−1)

ϕk = (φk, θk) are (deterministic & probabilistic) parameters of the neural net

(block) fϕk
The entire iteration (cascade) consists of K sequential blocks

xK = (fϕK ◦ fϕK−1 ◦ · · · ◦ fϕ1) (∇D, x0) := fΦK
(∇D, x0), with Φk := (ϕ1, . . . , ϕk)

Bayesian Deep Gradient Descent

Each block (network) of the cascade consists of two parts

Deterministic layers with weights φk
A final Bayesian layer with (random) weights θk

For θk we learn the variational parameters ψk defining their distribution

To estimate the posterior p(θ|X,Y ) we use variational inference which uses

an approximate, simple to compute, distribution q∗ψ
Moreover, we train the network greedily: provided previous k − 1 blocks

have been trained, in block k we use the family Qk

qΨk
(Θk) = q∗Ψk−1

(Θk−1)qψk(θk|Θk−1), with qψk(θk|Θk−1) =
D∏
d=1
N (µk,d, σ2

k,d),

where ψk = {(µk,`, σ2
k,d)}Dd=1, and q

∗
Ψk−1

is the distribution learnt for the

previous k − 1 blocks

The optimal distribution is computed by minimising the negative ELBO

q∗Ψk
∈argmin

qΨk∈Qk
Lk(qΨk

;X,Y ) :=−
∫
qΨk

(Θk) log p(X|Y,Θk)dΘk + KL(qΨk
(Θk)‖p(Θk))

The prior is set recursively as

p(Θk) = qΨk−1(Θk−1)p(θk|Θk−1),where p(θk|Θk−1) = N (0, I).

BDGD takes the likelihood as:

p(x|y,Θk) = N (fΘk
(∇D, x0), σ2

kI)

Estimating Predictive Uncertainty

The optimal approximate posterior distribution is given by

q∗ΨK
(ΘK) = q∗Ψ1

(θ1)
K∏
k=2

q∗Ψk
(θk|Θk−1)

.

We use Monte Carlo (MC) estimators to estimate the statistics of of the

approximate predictive posterior defined as:

q∗(x|y) =
∫
p(x|y,ΘK)q∗ΨK

(ΘK)dΘK

We compute the expected image (mean) and use T ≥ 1 Monte Carlo

samples:

Ê[x] := 1
T

T∑
t=1

fΘ̂t
K
(∇D, x0)

We summarise predictive uncertainty as the (entry-wise) predictive variance

Var[x] at the Kth step:

Var[x] = VarqΨK(ΘK)[E(x|y,ΘK)] + EqΨK(ΘK)[Var(x|y,ΘK)]

≈ σ2
K + 1

T

T∑
t=1

fΘt
K
(∇D, x0)2 −

 1
T

T∑
t=1

fΘt
K
(∇D, x0)
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BDGD Framework Diagram

Practicalities in Training

Training

Input: # reconstruction steps K , dataset D, initial guess x(i)
0 , batch-sizeM

1 for k← 1 to K do
2 Construct network's input:

3 Dk−1 = {x(i)
k−1,∇D(y(i), Ax

(i)
k−1)}Ni=1

4 Train the k-th network fφk,θk(∇D(y(i), Ax
(i)
k−1), x

(i)
k−1):

5 // stochastic mini-batch optimisation

6 ψ∗k, φ
∗
k ← arg minq∈Qk,φk

{
L̂(φk, q) = −N

M

∑M
i EΘ̂k∼qΦk(Θk)

[
log pΦk(x(i)|y(i), Θ̂k)

]
+ KL(qΦk(Θk)||pΦk(Θk))

}
7 // update with θ̂k ∼ q∗Φk

(θk|Θk−1)

8 x
(i)
k ← fφk,θ̂k(∇D(y(i), Ax

(i)
k−1), x

(i)
k−1)

Output: approximate posterior at each reconstruction step

Inference

Input: # reconstruction steps K , observation y, initial guess x0, trained parameters (ΦK,ΨK), # samples T

9 for t← 1 to T do
10 //with Θ̂(t)

K ∼ q∗ΦK
(ΘK)

11 Sample x
(t)
K = fΦK ,Θ̂

(t)
K

(∇D(y, Ax0), x0)

12 Evaluate Ê[x] and V̂ar[x] with {x(t)
K }Tt=1

Output: Ê[x] and V̂ar[x]

Results

Sparse view CT, with respect to the number of directions (dirs), and limited angle CT, with

respect to the available range of angles. We report the mean PSNR over the ellipses dataset as

well as the PSNR for the Shepp-Logan.

Table 1:Sparse View CT (30 dirs)

Methods Ellipses Phantoms SL Phantom

FBP 25.5264 18.4667

TV 35.1587 37.2162

LPD 44.5122 ± 0.4911 44.0472 ± 0.4187

DGD 43.2577 ± 0.4183 44.6913 ± 0.6644

BDGD - MFVI 44.6642 ± 0.4637 47.2946 ± 0.5778

BDGD - MCDO 43.2126 ± 0.1285 45.1725 ± 0.4461

Table 2:Limited View CT [0, 2π/3)
Methods Ellipses Phantoms SL Phantom

FBP 18.5958 17.1085

TV 32.9134 29.2113

LPD [1] 40.7578 ± 0.3050 33.8427 ± 1.2380

DGD [2] 42.6994 ± 0.4243 42.8905 ± 0.5883

BDGD - MFVI 44.0297 ± 0.4698 45.5140 ± 0.8261

BDGD - MCDO 41.5367 ± 0.3884 41.4397 ± 0.6299

Fig. 1:Mean estimates and epistemic uncertainty maps by BDGD-MFVI for different geometries: (Left) sparse view

with 30 directions, (Centre) limited view [0, π/3), (Right) limited view [0, 2π/3).

Fig. 2:Out-of-distribution reconstruction for different geometries by BDGD-MFVI: (Left) sparse view with 30 direc-

tions, (Centre) limited view [0, π/3), (Right) limited view [0, 2π/3).

Bibliography

[1] Jonas Adler and Ozan Öktem.

Learned primal-dual reconstruction.

IEEE Trans. Med. Imag., 37(6):1322--1332, 2018.

[2] Andreas Hauptmann, Felix Lucka, Marta Betcke, Nam Huynh, Jonas Adler, Ben Cox, Paul Beard, Sebastien

Ourselin, and Simon Arridge.

Model-based learning for accelerated, limited-view 3-d photoacoustic tomography.

IEEE Trans. Med. Imag., 37(6):1382--1393, 2018.


