Revisiting ImprovedGAN with Metric Learning for Semi-Supervised Learning

Yoon Gyo Jung Andrew Beng Jin Teoh Jaewoo Park

Yonsei University

(1)

(2)

(4)

labels

Objective and Contribution

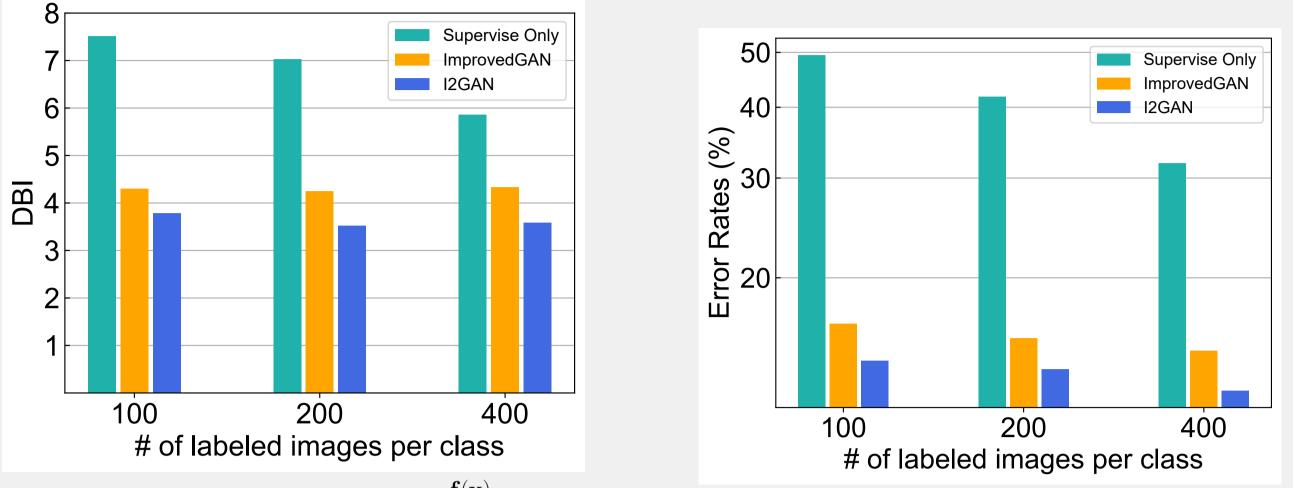
Objective: The adversarial loss in ImprovedGAN is analyzed under a metric learning framework, General Pair Weighting.

Contributions:

- Its theoretical properties related to class-wise cluster separation are observed, and further verified experimentally.
- In particular, adversarial losses in ImprovedGAN is observed to induce class-wise cluster separation on the features of all samples (both labeled and unlabeled).
- Based on the finding, two techniques are provided to enhance the class-wise cluster separation characteristic.

Class-wise Cluster Separation:

The above two propositions suggests that the adversarial interaction by L_u and L_q induces class-wise cluster separation of the real features f_{i} .



ImprovedGAN: Given a labeled set $\mathcal{L} = \{(x_1, y_1), \dots, (x_{|\mathcal{L}|}, y_{|\mathcal{L}|})\}$ with K classes, ImprovedGAN is trained by minimizing

$$\min_{D} L_u + L_s$$

and

$$\min_{G} L_g = \| \mathbb{E}_{\mathbf{x} \sim p_x} \mathbf{f}(\mathbf{x}) - \mathbb{E}_{\widehat{\mathbf{x}} \sim p_{G(\mathbf{z})}} \mathbf{f}(\widehat{\mathbf{x}}) \|_1$$

in an alternating manner for the discriminator D and generator G where L_u is the unsupervised discriminator loss

 $L_u = -\mathop{\mathbb{E}}_{\mathbf{x} \sim p_x} \log q(y \le K | \mathbf{x}) - \mathop{\mathbb{E}}_{\widehat{\mathbf{x}} \sim p_{G(z)}} \log q(y = K + 1 | \widehat{\mathbf{x}}),$ (3) $L_s = - \mathop{\mathbb{E}}_{(\mathbf{x},y)\sim\mathcal{L}} \log q(y|\mathbf{x}, y \leq K)$ is the supervision loss. The class predictor q is modeled by $q(y = k | \mathbf{x}) = \frac{e^{s_k(\mathbf{x})}}{1 + \sum_{i=1}^{K} e^{s_j(\mathbf{x})}}$ with $s_{K+1} = 0$ and the K + 1-th class serving as a fake class.

Observations

The role of the adversarial losses, namely, L_u and L_g is analyzed.

As a Metric Learning Loss: L_u is written as

 $1 \stackrel{N}{\frown}$ $\begin{pmatrix} K \\ \widehat{K} \\ \widehat{\Sigma} \\ \widehat{c} \end{pmatrix}$ (a) DBI of the normalized features $\frac{\mathbf{f}(\mathbf{x})}{\|\mathbf{f}(\mathbf{x})\|}$ from real samples \mathbf{x}

Method

(b) Semi-supervision error-rate in inference

To enhance class-wise cluster separation characteristic of ImprovedGAN, we propose:

• Scaling-up the unsupervised discriminator loss: replace L_u by

$$L_u \leftarrow L_{u,\tau} := \tau L_u \tag{6}$$

(7)

to make the model optimization end up with higher prediction confidence. • Excessive sampling on generated samples: for the loss L_q, replace $\{\widehat{\mathbf{x}}_{i'}\}_{i=1}^N \leftarrow \{\widehat{\mathbf{x}}_{i'}\}_{i=1}^{N'} \quad \text{where } N' > N$

to better satisfy the sufficient condition of Prop 2.

The enhanced ImprovedGAN is termed as **I2GAN**.

Experiments

Table: The SSL performance	e in error rates (%) on CIFAR-10
----------------------------	----------------------------------

200

400

100

$$L_{u} = \frac{1}{N} \sum_{i=1}^{L} \left[\log \left(1 + \frac{1}{\sum_{j=1}^{K} e^{s_{ij}}} \right) + \log \left(1 + \sum_{j=1}^{L} e^{s_{ij}} \right) \right]$$

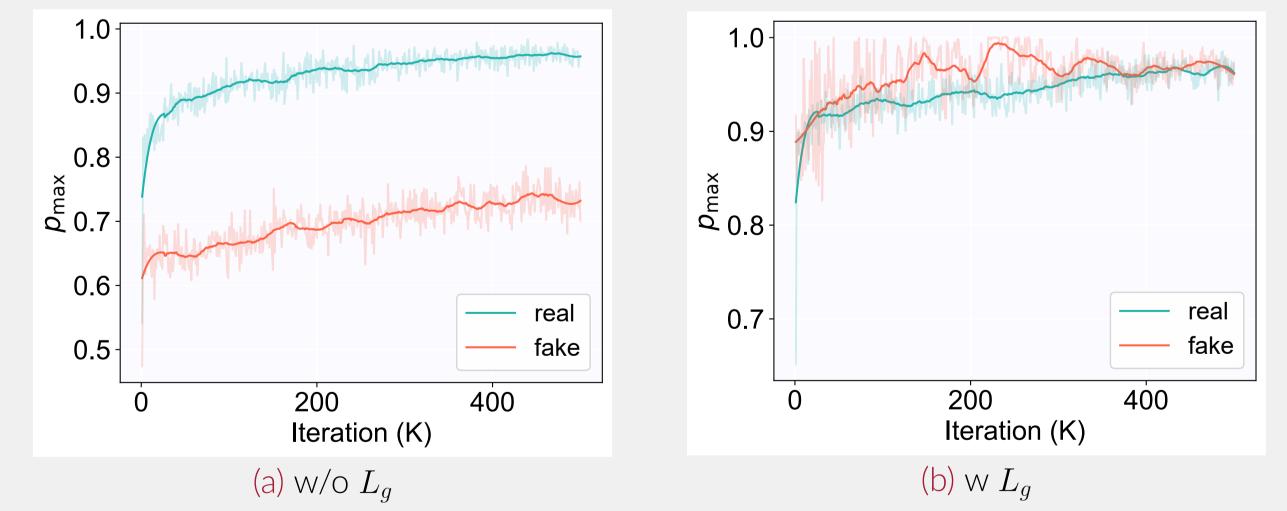
where the **similarity** s_{ij} is between the feature $\mathbf{f}_i = \mathbf{f}(\mathbf{x}_i)$ and class weight vector \mathbf{w}_j : (5)

$$s_{ij} = \mathbf{f}_i \cdot \mathbf{w}_j = \|\mathbf{f}_i\| \|\mathbf{w}_j\| \cos \theta_{ij}.$$

Under GPW, the followings can be proved:

Prediction Confidence:

Prop 1. Minimizing L_u maximizes $\max_i s_{ij}$ and thus the prediction confidence $p_{\max}(\mathbf{x}) = \max_y q(y|y < K, \mathbf{x})$ for real \mathbf{x} .



Angle Minimization (i.e., cosine similarity maximization):

Prop 2. If \mathbf{f}_i and $\widehat{\mathbf{f}}_{i'} = (\widehat{\mathbf{x}}_{i'})$ with a generated sample $\widehat{\mathbf{x}}_{i'}$ are sufficiently near to each other, then minimizing L_u decreases the angle θ_{ij} while constraining $\|\mathbf{f}_i\| \|\mathbf{w}_j\|$ to be

Mean Teacher*	5.45 ± 0.14	5.21 ± 0.21	
LP* (CVPR'19) ICT* (NIPS'19)	16.93 ± 0.70 15.48 ± 0.78	13.22 ± 0.29 9.26 ± 0.09	10.61 ± 0.28 7.29 ± 0.02
SWA* (ICLR'19)	15.40 ± 0.70 15.58	11.02	9.05
ALI*	19.98 ± 0.89	19.09 ± 0.44	17.99 ± 1.62
TripleGAN*	81.08 ± 0.57	18.21 ± 0.37	16.99 ± 0.36
Local-GAN*	17.44 ± 0.25	-	14.23 ± 0.27
ImprovedGAN*	21.83 ± 2.01	19.61 ± 2.09	18.63 ± 2.32
BadGAN*	22.42 ± 0.17	18.64 ± 0.08	14.41 ± 0.30
ImprovedGAN w/ ${\cal M}$ Inv.*	19.52 ± 1.5	-	16.20 ± 1.6
ImprovedGAN w/ ${\cal M}$ Reg.*	16.37 ± 0.42	15.25 ± 0.35	14.34 ± 0.17
ImprovedGAN	16.80 ± 0.54	15.64 ± 0.12	14.86 ± 0.26
I2GAN	14.29 ± 0.22	13.80 ± 0.20	12.63 ± 0.17
e-I2GAN	14.93 ± 0.25	13.77 ± 0.07	13.29 ± 0.35

Table: The SSL performance in error rates (%) on CIFAR-100

# labels	40
Supervise Only	74.85 ± 0.55
BadGAN*	61.49 ± 0.73
ImprovedGAN (our implementation) I2GAN	51.31 ± 0.32
e-I2GAN	52.50 ± 1.25

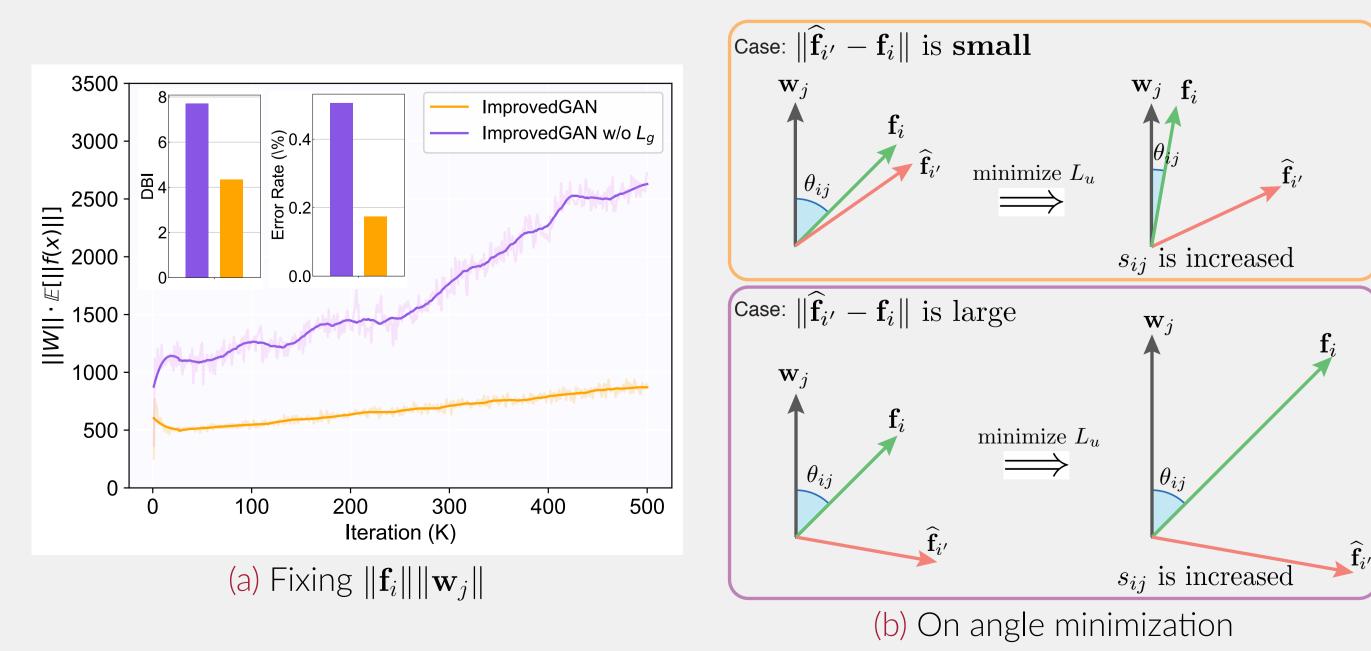


Figure: The class-wise cluster separation is measured by Davies-Bouldin Index (DBI).

Table: The SSL performance in error rates (%) on SVHN

# of labeled images for each class	50	100
Temporal Ensemble*	7.01 ± 0.29	5.73 ± 0.16
SPCTN*	-	7.73 ± 0.30
Pseudo-Labeling*		9.94 ± 0.61
Mean Teacher*	5.45 ± 0.14	5.21 ± 0.21
VAT*	-	5.77
ALI*	_	7.41 ± 0.65
TripleGAN*	5.33 ± 0.12	5.77 ± 0.17
LocalGAN*	5.48 ± 0.29	4.73 ± 0.29
ImprovedGAN*	18.44 ± 4.80	8.11 ± 1.3
BadGAN*	5.79 ± 0.45	$\textbf{4.68} \pm \textbf{0.07}$
ImprovedGAN (our implementation)	5.79 ± 0.19	5.60 ± 0.09
I2GAN	$\textbf{5.27} \pm \textbf{0.13}$	5.17 ± 0.16
e-I2GAN	5.43 ± 0.13	5.27 ± 0.10