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1. INTRODUCTION
Motivation

• Although recent deep learning object detectors such as Faster
R-CNN have shown excellent performance for general object
detection, they have limited success for detecting pedestrians.

• There is still a significant gap in the performance of the detec-
tion of pedestrians at different scales.

• We observed pedestrian datasets and found that pedestrians
often gather together in crowded public places.

So it is considered that the detection of small-scale pedestrians is
the bottleneck for improving the performance of detectors.

In this paper, we extend the existing object detection ideas and
introduce a simple but effective model that is suitable for detecting
small-scale pedestrians we call MagnifierNet. The main idea was
inspired by the function of a magnifier.

Therefore, the MagnifierNet module implements pedestrian de-
tection by focusing on small-scale pedestrian dense regions. During
inference, these regions are up-sampled for detection as shown in
the figure above.

Challenges

• Finding multiple dense regions of small-scale pedestrians in
the image.

Main Contribution

• We propose a pedestrian detector which has better perfor-
mance and is particularly effective for small-scale pedestrians.
Since this method was inspired by the magnifier, we named it
MagnifierNet.

• To find the multiple dense regions of small-scale pedestrians
in the image, we propose a small object grouping algorithm
based on sweep-line.

• We introduce a new data augmentation strategy suitable for
pedestrian datasets based on the grouping algorithm.

• MagnifierNet achieves the best detection performance on the
CityPersons benchmark without using any external data and
improves the performance of smallscale pedestrians signifi-
cantly. In addition, we also achieve competitive performance
on the KITTI dataset.

2. MODEL ARCHITECTURE

The difference from the Faster R-CNN model is that the output of RPN has an additional branch to find small-scale pedestrian dense regions, which works in the inference stage

3. MAGNIFIERNET

Area threshold Grouping algorithm Data augmentation
We believe that the area distribution of the small-
scale pedestrian bounding box should be similar
to the area distribution of the large-scale pedes-
trian bounding box. The size of the group box
can be determined by:

st =
Lt

St

(1)

gwt · ght · st = w · h (2)

gwt =
w
√
st

ght =
h
√
st

(3)

The calculation formula of t̂ is as follows:

t̂ = argmin
t

KL (Pt(ξ)‖Qt(ξ)) (4)

We propose the sweep-line based grouping algorithm to find multiple dense
regions. The transfer equation for dynamic programming is:

dp (xi) = min
xi−xj<gw

{dp (xj) + count (xj , xi)} (5)

After finding small-scale pedestrian dense regions, we cropped these regions
from the image, and upsampled them.

After finding small-scale pedestrian dense regions, we cropped
these regions from the image, and upsampled them.

5. CONCLUSION

In this work, it is considered that the detection of small-scale
pedestrians is the bottleneck for improving the performance of
pedestrian detectors.

To address this, we propose MagnifierNet, a simple but effective
detector which is focused on smallscale pedestrian dense regions.
We introduce a sweep-line based grouping algorithm to find multi-
ple dense regions. With the help of the effective data augmentation
strategy, MagnifierNet brings significant improvements in detecting
small-scale pedestrians.

The experimental results show that it outperforms other detec-
tion methods on KITTI and CityPersons datasets.
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4. EXPERIMENTS
To demonstrate the effectiveness of the proposed method, we evaluate two of the largest pedestrian detection benchmark, i.e., KITTI and

CityPersons.

CityPersons KITTI

Methods R H P B S M L
FRCNN 15.4 - - - 25.6 7.2 7.9

FRCNN+Seg 14.8 - - - 22.6 6.7 8.0
OR-CNN 12.8 55.7 15.3 6.7 - - -
RepLoss 13.2 56.9 16.8 7.6 - - -

TLL+MRF 14.4 52.0 15.9 9.2 - - -
ALFNet 12.0 51.9 11.4 8.4 19.0 5.7 6.6

CSP 11.0 49.3 10.4 7.3 16.0 3.7 6.5
Baseline 18.7 52.5 19.1 13.1 32.6 12.1 8.4

+DA 15.3 48.5 12.6 12.0 18.2 7.2 9.3
+GA 15.6 49.7 15.5 11.0 22.9 9.4 8.0

+DA & GA 10.8 42.2 10.1 7.4 12.6 5.5 7.7

Method E M H
FRCNN 78.35 65.91 61.19

MS-CNN 83.70 73.62 68.28
RPN+BF 75.58 61.29 56.08

F-ConvNet 83.63 72.91 67.18
VMVS 81.11 70.89 67.23

MonoPSR 85.60 68.56 63.34
SubCNN 83.17 71.34 66.36

Aston-EAS 85.12 74.52 69.35
MHN 85.80 74.60 68.94
CLA − 73.96 −

Baseline 84.15 68.78 63.60
+DA 85.51 73.75 68.54
+GA 86.21 72.67 67.55

+DA & GA 86.95 74.95 69.50

To our best knowledge, our MagnifierNet detector achieves the best small-scale pedestrian detection performance on CityPersons benchmark
without any external data, and also achieve competitive performance on the KITTI dataset.


