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1. INTRODUCTION

Motivation

2. MODEL ARCHITECTURE

o Although recent deep learning object detectors such as Faster
R-CNN have shown excellent performance for general object
detection, they have limited success for detecting pedestrians.

upsampling small proposals

— ResNet-101 FPN Groups

Rol Pooling

FC layers
£ bbox reg

Coordinates

A 4

Input

e There is still a significant gap in the performance of the detec-
tion of pedestrians at different scales.
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The ditference from the Faster R-CNN model is that the output of RPN has an additional branch to find small-scale pedestrian dense regions, which works in the inference stage

e We observed pedestrian datasets and found that pedestrians
often gather together in crowded public places.
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So it is considered that the detection of small-scale pedestrians is
the bottleneck for improving the performance of detectors.

3. MAGNIFIERNET
Area threshold

We believe that the area distribution of the small-
scale pedestrian bounding box should be similar
to the area distribution of the large-scale pedes-
trian bounding box. The size of the group box
can be determined by:

Grouping algorithm Data augmentation

We propose the sweep-line based grouping algorithm to find multiple dense
regions. The transfer equation for dynamic programming is:
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In this paper, we extend the existing object detection ideas and ”
introduce a simple but effective model that is suitable for detecting qW; = ——
small-scale pedestrians we call MagnifierNet. The main idea was VSt (3)
inspired by the function of a magnifier. ghy = h D S s
g VSt Sote e o .

Therefore, the MagnifierNet module implements pedestrian de-
tection by focusing on small-scale pedestrian dense regions. During
inference, these regions are up-sampled for detection as shown in
the figure above.

The calculation formula of ¢ is as follows:
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After finding small-scale pedestrian dense regions, we cropped
After finding small-scale pedestrian dense regions, we cropped these regions these regions from the image, and upsampled them.

from the image, and upsampled them.

4. EXPERIMENTS 5. CONCLUSION

To demonstrate the effectiveness of the proposed method, we evaluate two of the largest pedestrian detection benchmark, i.e., KITTI and
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To our best knowledge, our MagnifierNet detector achieves the best small-scale pedestrian detection performance on CityPersons benchmark
without any external data, and also achieve competitive performance on the KITTI dataset.
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