Camera Calibration Using Parallel Line Segments

Gaku Nakano, NEC Corporation g-nakano@nec.com

Background

Camera calibration is a necessary preprocess to conduct 3D object analysis from 2D images. For surveillance cameras, the standard methods using a checkerboard or a 3D sensor are not impractical due to traffic restrictions.

Contributions

- 1. developed a closed-form solution that determines camera parameters as well as 3D position of the lines from $n \geq 2$ line segments.
- 2. demonstrated that pedestrian joints detected by OpenPose can be available as a calibration object.

Proposed Method

Assumptions of line segments

- Same length
- Parallel
- Perpendicular to the ground

e.g. Traffic lights, Truck box, Pedestrian's height

[x,y,0]

Line segment detection

Bundle adjustment with lens distortion

Num of lines needed to solve

Known variables: 4n

2D coord. of two endpoints

→ $n \ge 2$

Unknown variables: 2n + 4

height h, rotational angles θ , ϕ ,

focal length f, (x,y) position of each line

Experimental Results

Noisy lines using human pose

Neck-midhip connections by OpenPose on each frame can be useable for camera calibration.

		Focal length	Lens dist.	$oldsymbol{ heta}$ [deg]	Height [m]
	GT	747	-0.356	27.7	2.78
	Ours	715	-0.217	28.2	2.73
	Rel. Err	4.3%	39%	1.8%	1.8%
	GT	1396	-0.286	40.0	3.12
	Ours	1386	-0.203	41.7	3.15
	Rel. Err	0.7%	29%	4.3%	1.0%

Applications

Social distancing detection

Real-time checking from surveillance cameras that already installed in town.

Planar image rectification

The ratio of four sides are estimated by specifying two lines of a rectangle.

