Improving reliability of attention branch network by introducing uncertainty

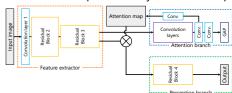
ICPR 2020

Takuya Tsukahara, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi (Chubu University)

Background -

- Convolutional Neural Networks (CNN)
 - Used in various fields to achieve high recognition accuracy
- Problem of existing CNN
 - Difficult to measure the reliability of CNN output
 - Does not consider uncertainty
- Bayesian Neural Network (BNN) [Blundell+, ICML2015]
 - Represent the weight of a network model by probability distribution
 - Uncertainty can be estimated along with prediction results
- Monte Carlo dropout (MCDO) [Gal+, ICML2016]
 - Approximate inference of large-scale and complex models
 - Apply dropout and represent weights with a Bernoulli distribution

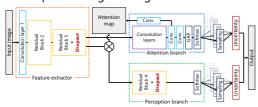
- Attention Branch Network (ABN) [Fukui+, CVPR2019]
 - Introduce an attention mechanism
 - Provides visual explanation by attention map



- Research Objective & Approach
 - Improving CNN reliability by considering uncertainty
 - Apply MCDO to ABN to introduce uncertainty

Proposed method

- Bayesian Attention Branch Network (Bayesian ABN)
 - Improve accuracy and reliability of CNN
 - Introduce uncertainty estimation into ABN
- Structure of Bayesian ABN
 - Added dropout
 - Apply feature extractor and perceptual branch
 - Use dropout during learning and evaluation



- Uncertainty estimation
 - Sample the output of attention branch and perception branch
 - lacktriangle Estimate the prediction distribution p_{branch} from the average of the outputs
 - lacktriangle The uncertainty $H\left(oldsymbol{p}_{\mathrm{branch}}\right)$ is estimated by the entropy of the predicted distribution P_c for each class $c = 1, \ldots, C$:

$$H\left(\boldsymbol{p}_{\mathrm{branch}}\right) = -\sum_{c=1}^{C} P_c \ln P_c$$

Estimating prediction results using uncertainty

[Unit : %]

 \odot Use the predicted distribution p with the lowest uncertainty as a result

$$oldsymbol{p} = egin{cases} oldsymbol{p}_{
m att} & H\left(oldsymbol{p}_{
m att}
ight) < H\left(oldsymbol{p}_{
m per}
ight) \ oldsymbol{p}_{
m per} & H\left(oldsymbol{p}_{
m att}
ight) \geqq H\left(oldsymbol{p}_{
m per}
ight) \end{cases}$$

 $p_{
m att}$: Predicted distribution of attention branch

 $p_{
m per}$: Predicted distribution of perception branch

Experiment '

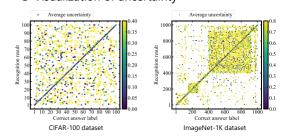
- Datasets (3 types)
 - 1. CIFAR-10 dataset
 - 2. CIFAR-100 dataset
 - 3. ImageNet-1K dataset
- Comparative methods (3 types)
 - 1. Base network
 - 2. Base network + ABN
 - 3. Base network + Bayesian ABN
- Base network (4 types)
 - 1. Residual Network (ResNet)
 - 2. Wide Residual Network (WRN)
 - 3. Dense Convolutional Network (DenseNet)
 - 4. ResNeXt

Evaluation of recognition accuracy

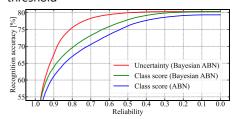
Methods			CIFAR-10 dataset		CIFAR-100 dataset		ImageNet-1K dataset	
Base	ABN	Bayesian ABN	Top-1 accuracy	Top-5 accuracy	Top-1 accuracy	Top-5 accuracy	Top-1 accuracy	Top-5 accuracy
ResNet			93.57	_	75.86	-	77.81	_
	V		94.25	99.77	76.09	92.80	79.35	94.55
		V	94.28	99.78	78.97	94.58	80.31	95.01
WRN			95.83	-	79.50	_	76.61	_
	V		96.04	99.89	82.01	95.53	76.93	92.97
		~	96.06	99.90	82.04	95.75	77.75	93.20
DenseNet			94.08	-	75.85	-	77.80	_
	V		94.48	99.79	76.51	93.57	75.85	92.87
		V	94.75	99.83	79.47	94.87	78.61	94.16
ResNeXt			96.42	-	81.68	_	77.60	_
	V		96.93	99.91	82.05	96.73	78.48	94.10
		~	96.97	99.93	83.11	96.94	79.39	94.62

Bayesian ABN achieved the highest recognition accuracy

- Analyze the effectiveness of uncertainty
 - Visualization of uncertainty



 Recognition accuracy over different reliability threshold



Introducing uncertainty improves reliability