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— Background : \
B Convolutional Neural Networks (CNN) | W Attention Branch Network (ABN) [Fukui+, CvpPR2019]
® Used in various fields to achieve high recognition accuracy | @ Introduce an attention mechanism
B Problem of existing CNN /C?\ /@\ | @ Provides visual explanation by attention map
@ Difficult to measure the reliability of CNN output % é% % @g é % | il |
® Does not consider uncertainty NS¢ A | H 33
B Bayesian Neural Network (BNN) [sundeil+, icmL2015] e@ | £ B
® Represent the weight of a network model by probability distribution | Feature extractor
® Uncertainty can be estimated along with prediction results |
B Monte Carlo dropout (MCDO) (cal+, icmL2016] | M Research Objective & Approach
@®@ Approximate inference of large-scale and complex models | @ Improving CNN reliability by considering uncertainty
®@ Apply dropout and represent weights with a Bernoulli distribution | @ Apply MCDO to ABN to introduce uncertainty
\ ! J
~— Proposed method \

B Bayesian Attention Branch Network (Bayesian ABN)
® Improve accuracy and reliability of CNN

B Uncertainty estimation
® Sample the output of attention branch and perception branch
® Introduce uncertainty estimation into ABN
B Structure of Bayesian ABN
@® Added dropout
* Apply feature extractor and perceptual branch
® Use dropout during learning and evaluation

® Estimate the prediction distribution Puranch from the average of the outputs
® The uncertainty H (Purancs) is estimated by the entropy of the predicted
distribution P. for each classc =1,...,C:
H (Pyranch) = — ZS:I Feln P
B Estimating prediction results using uncertainty
® Use the predicted distribution p with the lowest uncertainty as a result

p _ patt H (patt) < H (ppcr)
pper H (patt) ; H (pper)
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— Experiment w
B Datasets (3 types) B Comparative methods (3 types) B Base network (4 types)
1. CIFAR-10 dataset 1. Base network 1. Residual Network (ResNet)
2. CIFAR-100 dataset 2. Base network + ABN 2. Wide Residual Network (WRN)
3. ImageNet-1K dataset 3. Base network + Bayesian ABN 3. Dense Convolutional Network (DenseNet)
4. ResNeXt

B Evaluation of recognition accuracy o ' ™ Analyze the effectiveness of uncertainty

® Visualization of uncertainty

[Unit :

Methods

CIFAR-10 dataset CIFAR-100 dataset | ImageNet-1K dataset

+ Average uncertainty - Average uncertainty

Reliability

- Bayesian ABN achieved the highest recognition accuracy = Introducing uncertainty improves reliability
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